Recently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visualized and analyzed according to the theory of Complex Networks by representing the stations as nodes and the transmission lines as edges. This analysis is done by applying network metrics to the proposed national IPG network. Finally, this work provides a professional visualization of the generated network based on the demographic distribution and the accurate coordinates of the power stations. Thus, this proposed network is useful for the Iraqi Ministry of Electricity. Besides, it can be adopted by officials and specialists to understand, visualize and evaluate the performance of the current IPG network since it is still under development and modernization.
In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.
... Show More
The V2O5 films were deposited on glass substrates which produce using "radio frequency (RF)"power supply and Argon gas technique. The optical properties were investigated by, UV spectroscopy at "radio frequency" (RF) power ranging from 75 - 150 Watt and gas pressure, (0.03, 0.05 and 0.007 Torr), and substrate temperature (359, 373,473 and 573) K. The UV-Visible analysis shows that the average transmittance of all films in the range 40-65 %. When the thickness has been increased the transhumance was decreased from (65-40) %. The values of energy band gap were lowered from (3.02-2.9 eV) with the increase of thickness the films in relation to an increase in power, The energy gap decreased (2.8 - 2.7) eV with an increase in the pressure and
... Show MoreThe influence of 5-10 kHz audio frequency on the power dissipation in ac discharge of argon gas was studied experimentally, at pressures 50-80 mTorr and electrodes separation 10 cm (pd range 0.5-0.8 Torr.
cm). The measurements have shown that the discharge behavior in the ac circuit is equivalent to a series RC circuit. It is observed that the variation curve of discharge power P with the frequency f is approximately has a Gaussian shape. It is also observed that the curve of Pm- pd is the inverse of Paschen curve, where Pm is the maximum power in the frequency range. The time of breakdown is estimated from the curve of P- f.
Recently new concepts such as free data or Volunteered Geographic Information (VGI) emerged on Web 2.0 technologies. OpenStreetMap (OSM) is one of the most representative projects of this trend. Geospatial data from different source often has variable accuracy levels due to different data collection methods; therefore the most concerning problem with (OSM) is its unknown quality. This study aims to develop a specific tool which can analyze and assess the possibility matching of OSM road features with reference dataset using Matlab programming language. This tool applied on two different study areas in Iraq (Baghdad and Karbala), in order to verify if the OSM data has the same quality in both study areas. This program, in general, consists
... Show MoreThe issues of journalists and media employees in general and photojournalists in particular have become important issues, especially as those issues are closely linked to the success or failure of the media process.
This research deals with (the issues of Iraqi photojournalists working in local and foreign institutions in Iraq - a case study in 2012), because of the ambiguity in identifying those issues, which focused on the issues of this research.
This was done through the research community of members of the Association of Iraqi photojournalists in Baghdad exclusively of (64) photographers and television photographers to identify the problems encountered in their work
... Show MoreThe population has been trying to use clean energy instead of combustion. The choice was to use liquefied petroleum gas (LPG) for domestic use, especially for cooking due to its advantages as a light gas, a lower cost, and clean energy. Residential complexes are supplied with liquefied petroleum gas for each housing unit, transported by pipes from LPG tanks to the equipment. This research aims to simulate the design and performance design of the LPG system in the building that is applied to a residential complex in Baghdad taken as a study case with eight buildings. The building has 11 floors, and each floor has four apartments. The design in this study has been done in two parts, part one is the design of an LPG system for one building, an
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
Magneto-rheological (MR) valve is one of the devices generally used to control the speed of Hydraulic actuator of MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. A mathematical model for the MR valve is developed and the simulation is carried out to evaluate the newly developed MR valve. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMMR). The model dimensions of MR valve, material properties are taken into account. The results of analysis are presented in terms of magnetic strength H and magnetic flux density B. The simulation results based on the proposed model indicate that the ef
... Show More