Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing considered tasks despite the limitation in the number of expert demonstrations, which clearly indicate the potential of our model.
Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreThe current research aims to prepare a proposed Programmebased sensory integration theory for remediating some developmental learning disabilities among children, researchers prepared a Programme based on sensory integration through reviewing studies related to the research topic that can be practicedby some active teaching strategies (cooperative learning, peer learning, Role-playing, and educational stories). The Finalformat consists of(39) training sessions.
The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA
... Show MoreThe evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreThe research aims to characterize the strategic plan of the Educational Professional Development Center, to reveal the most important training needs for teachers from this center, to reveal the extent to which this center meets those needs, and to identify the differences between teacher responses about the degree of importance, availability of those needs according to variables of sex, specialization, and years of experience. This descriptive study adopted a questionnaire applied to (256) teachers in the K.S.A. The results of the study showed that all training needs ranged in the degree of importance from large to very large and that the most important were the skills associated with communicating with members of the learning community.
... Show MoreDiese Forschungsarbeit versteht sich als ein Versuch zur Bestimmung einer der neuen Unterrichtsmethoden, die den Lernenden im Fach Deutsch besonders interessant vorkommen.Der Unterricht soll in einer Atmosphäre, die frei von Zeitdruck, Angst und Zensurdruck ablaufen lassen, damit werden die Studenten ermutigt, die Nutzung von Spiel zu ihrer eigenen Sache machen, um die Spielziele Spaß, Empathie, Zusammenarbeit und Kommunikation zu realisieren. Das Hauptlernziel des Fremdsprachenunterrichts ist es, Lernenden zu ermöglichen, in der Zielsprache zu kommunizieren.
Wir konzentrieren uns in diesem Beitrag auf eine wichtige sprachliche Fertigkeit, die den rezeptiven Fertigkeiten gehört, die ist das Hörverstehen.
Das Hörvers
... Show MoreBackground: The disc prolapse is a common condition especially in young adults. Different levels are affected in the lumber region; the L4/L5 disc is more susceptible to longitudinal load and is the most common site of lumbar disc prolapse. The L5/S1 disc is protected from torsion load by strong ilio-lumbar ligaments but it is more susceptible to axial compressive forces. Many factors affect the result and outcome of surgery in these levels.Objective: The aim of this study is to correlate operative data, short-term results, complications, and prognostic factors (age, gender, mobility, hospital stay, and level of pain) for one-level lumber discectomybetween different levels (L4–L5 vs. L5–S1).Methods In this prospective study, 32 patie
... Show More