Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing considered tasks despite the limitation in the number of expert demonstrations, which clearly indicate the potential of our model.
There is no doubt that teachers are the leaders of positive changing in community where they directed the students and build their brains. In our current generation that characterized by accelerated technological development that communication changes, economic and politics, needs from the teacher an active leadership skills that match with the soul of our generation and contribute in confrontation the current challenges and the future challenges in the form that lead to create a conscious generation where they will be a basic brick for the future community where the listeners looking forward the education where they support the continuity communication of develop process, economy, scientifically and in all life fields. In our study we take
... Show MoreThis study aimed to identify the employment of the social networking platform «Twitter» in the 2016 presidential campaign led by the Republican candidate, Donald Trump; and analyse his tweets through his personal account on «Twitter» for the period from: 10/ 8/2016 to: 11/ 8/2016 which represents the last month of the election campaign.
The study belongs to the type of descriptive studies using the analytical method through an analysis index that includes sub-categories and other secondary categories. The research has adopted the ordinary unit of information material (tweet) as an analysis unit for this purpose.
... Show MoreDiese Forschungsarbeit versteht sich als ein Versuch zur Bestimmung einer der neuen Unterrichtsmethoden, die den Lernenden im Fach Deutsch besonders interessant vorkommen.Der Unterricht soll in einer Atmosphäre, die frei von Zeitdruck, Angst und Zensurdruck ablaufen lassen, damit werden die Studenten ermutigt, die Nutzung von Spiel zu ihrer eigenen Sache machen, um die Spielziele Spaß, Empathie, Zusammenarbeit und Kommunikation zu realisieren. Das Hauptlernziel des Fremdsprachenunterrichts ist es, Lernenden zu ermöglichen, in der Zielsprache zu kommunizieren.
Wir konzentrieren uns in diesem Beitrag auf eine wichtige sprachliche Fertigkeit, die den rezeptiven Fertigkeiten gehört, die ist das Hörverstehen.
Das Hörvers
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show MoreQuantum key distribution (QKD) provides unconditional security in theory. However, practical QKD systems face challenges in maximizing the secure key rate and extending transmission distances. In this paper, we introduce a comparative study of the BB84 protocol using coincidence detection with two different quantum channels: a free space and underwater quantum channels. A simulated seawater was used as an example for underwater quantum channel. Different single photon detection modules were used on Bob’s side to capture the coincidence counts. Results showed that increasing the mean photon number generally leads to a higher rate of coincidence detection and therefore higher possibility of increasing the secure key rate. The secure key rat
... Show MoreIn this paper, the theoretical cross section in pre-equilibrium nuclear reaction has been studied for the reaction at energy 22.4 MeV. Ericson’s formula of partial level density PLD and their corrections (William’s correction and spin correction) have been substituted in the theoretical cross section and compared with the experimental data for nucleus. It has been found that the theoretical cross section with one-component PLD from Ericson’s formula when doesn’t agree with the experimental value and when . There is little agreement only at the high value of energy range with the experimental cross section. The theoretical cross section that depends on the one-component William's formula and on-component corrected to spi
... Show MoreSentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show MoreIdentifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show More