Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning algorithms implementation in the recurrent stroke prediction models. This research aims to investigate and compare the performance of machine learning algorithms using recurrent stroke clinical public datasets. In this study, Artificial Neural Network (ANN), Support Vector Machine (SVM) and Bayesian Rule List (BRL) are used and compared their performance in the domain of recurrent stroke prediction model. The result of the empirical experiments shows that ANN scores the highest accuracy at 80.00%, follows by BRL with 75.91% and SVM with 60.45%.
The aim of the research is to evaluate the response of the researched leaders towards practicing the concept of the lens, which is its dimensions with (stakeholders, resource mobilization, knowledge development, culture management) and the nature of its relationship to tax pioneer performance represented in its dimensions (strategic direction, leadership indicators, growth, renewal and modernization, efficiency, Effectiveness) The questionnaire was approved as a main tool in collecting data and information from the sample members in the General Authority of Taxes, which number (91) Who are on (M. General Manager, Division Director, Deputy Director, Senior Division Director, Deputy Director, Second Division, Division Officer, M. D
... Show MoreThe research aims to identify the level of balance in the architectural thought influenced by the rational type human consciousness, the materialistic based on the Empirical type, moral based on human experience as source of knowledge.
This was reflected in architecture in the specialized thought that the mind is the source of knowledge which explains the phenomena of life. The rational approach based on objectivity and methodology in (Form Production), the other approach is based on subjectivity in form production (Form Inspiration).
The research problem is that there is imbalance in the relationship between the rational side and the human experience in architecture, which led into imbalance between theo
... Show MoreChilled ceilings systems offer potential for overall capital savings. The main aim of the present research is to investigate the thermal performance of the indirect contact closed circuit cooling tower, ICCCCT used with chilled ceiling, to gain a deeper knowledge in this important field of engineering which has been traditionally used in various industrial & HVAC systems. To achieve this study, experimental work were implemented for the ICCCCT use with chilled ceiling. In this study the thermal performances of closed wet cooling tower use with chilled ceiling is experimentally and theoretically investigated. Different experimental tests were conducted by varying the controlling parameters to investigate their effects
... Show MoreKE Sharquie, SA Al-Mashhadani, A A Noaimi, RK Al-Hayani, SA Shubber, Iraqi Journal of Community Medicine, 2017 - Cited by 1
KE Sharquie, SA Al Mashhadani, AA Noaimi, RK Al-Hayani, SA Shubber, Iraqi Postgraduate Medical Journal, 2012 - Cited by 1
Focused research aims to provide a framework cognitive analytical nature of real estate investments and how they evaluated in the light of the assessment tools of modern theory of real options, and the possibility to rely on that theory in the detection of the true value of projects, real estate investments that would maximize the value of the investment decision taken, and the analysis of those projects that arise in the real estate markets and environments is the organization, which she was to make sure cases and high-risk, compared with entrances techniques, discounted cash flow (net present value). Based on the assumption lies in the possibility of the application of the implic
... Show MoreThe study aims to measure the level of academic stress in the e-learning environment in three areas, students and their dealing with classmates, dealing with the professor and technical skills, and the nature and content of the curriculum among graduate students in the College of Education at King Khalid University during COVID-19 pandemic. This study was descriptive in nature (survey, comparative). The sample consisted of (512) male and female graduate students in the master's and doctoral programs. The Academic Stress Scale in the E-learning Environment designed by Amer (2021) was used. The results indicated a high level of academic stress among graduate students in the e-learning environment. The study also found that there were stati
... Show MoreBackground: Measuring implant stability is an important issue in predicting treatment success. Dental implant stability is usually measured through resonance frequency analysis (RFA). Osstell® RFA devices can be used with transducers (Smartpeg™) that correspond to the implants used as well as with transducers designed for application with Penguin® RFA devices (Multipeg™). Aims: This study aims to assess the reliability of a MultiPeg™ transducer with an Osstell® device in measuring dental implant stability. Materials and Methods: Sixteen healthy participants who required dental implant treatment were enrolled in this study. Implant stability was measured by using an Osstell® device with two transducers, namely, Smartpeg™ and M
... Show MoreThe need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien
... Show MoreThe need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2, 0, 0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlat
... Show More