Healthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopting a combination of Singular Value Decomposition (SVD), and Discrete Wavelet Transform (DWT). The combination of these two signal processing techniques is gaining lots of interest in the field of speaker and speech recognition. As a cough recognition approach, we found it well-performing, as it generates and utilizes an efficient minimum number of features. Mean and median frequencies, which are known to be the most useful features in the frequency domain, are applied to generate an effective statistical measure to compare the results. The hybrid structure of DWT and SVD, adopted in this approach adds to its efficiency, where a 200 times reduction, in terms of the number of operations, is achieved. Despite the fact that symptoms of the infected and non-infected people used in the study are having lots of similarities, diagnosis results obtained from the application of the proposed approach show high diagnosis rate, which is proved through the matching with relevant PCR tests. The proposed approach is open for more improvements with its performance further assured by enlarging the dataset, while including healthy people.
Objective: Assessment of primary schools science teachers' knowledge towards health promotion in Baghdad City.
Methodology: A descriptive study was conducted at (100) primary school at Al-Rasafa, and Al-Karkh sectors in
Baghdad City, from November 29th 2007 to January 20th 2009. A probability stratified random sample of (100)
teachers who teach science subject was selected, and had at least one year of employment in the teaching field. A
questionnaire format was used which was consisted of (2) parts. The overall number of the items included in the
questionnaire were (205) items. The first part was related to the demographic data of the teachers, the second part
(six sections) was concerned with teachers' knowledge about
Permeability is one of the essential petrophysical properties of rocks, reflecting the rock's ability to pass fluids. It is considered the basis for building any model to predict well deliverability. Yamama formation carbonate rocks are distinguished by sedimentary cycles that separate formation into reservoir units and insulating layers, a very complex porous system caused by secondary porosity due to substitute and dissolution processes. Those factors create permeability variables and vary significantly. Three ways used for permeability calculation, the firstly was the classical method, which only related the permeability to the porosity, resulting in a weak relationship. Secondly, the flow zone indicator (FZI) was divided reservoir into
... Show MoreNanofluids, liquid suspensions of nanoparticles (NPs) dispersed in deionized (DI) water, brine, or surfactant micelles, have become a promising solution for many industrial applications including enhanced oil recovery (EOR) and carbon geostorage. At ambient conditions, nanoparticles can effectively alter the wettability of the strongly oil-wet rocks to water-wet. However, the reservoir conditions present the greatest challenge for the success of this application at the field scale. In this work, the performance of anionic surfactant-silica nanoparticle formulation on wettability alteration of oil-wet carbonate surface at reservoir conditions was investigated. A high-pressure temperature vessel was used to apply nano-modification of oil-wet
... Show MoreBACKGROUND: Diffuse astrocytomas constitute the largest group of primary malignant human intracranial tumours. They are classified by the World Health Organization (WHO) into three histological malignancy grades: diffuse astrocytomas (grade II), anaplastic astrocytomas (grade III) and glioblastoma (grade IV) based on histopathological features such as cellular atypia, mitotic activity, necrosis and microvascular proliferation. Epidermal growth factor receptor (EGFR) is a 170-kDa transmembrane tyrosine kinase receptor expressed in a variety of normal and malignant cells regulating critical cellular processes. When activated, epidermal growth factor receptor (EGFR) triggers several signalling cascades leading to increased proliferatio
... Show MoreConstruction of artificial higher order protein complexes allows sampling of structural architectures and functional features not accessible by classical monomeric proteins. Here, we combine in silico modelling with expanded genetic code facilitated strain promoted azide-alkyne cycloaddition to construct artificial complexes that are structurally integrated protein dimers and demonstrate functional synergy. Using fluorescent proteins sfGFP and Venus as models, homodimers and heterodimers are constructed that switched ON once assembled and display enhanced spectral properties. Symmetrical crosslinks are found to be important for functional enhancement. The determined molecular structure of one artific
Poly urea formaldehyde –Bentonite (PUF-Bentonite) composite was tested as new adsorbent
for removal of mefenamic acid (MA) from simulated wastewater in batch adsorption
procedure. Developed a method for preparing poly urea formaldehyde gel in basic media by
using condensation polymerization. Adsorption experiments were carried out as a function of
water pH, temperature, contact time, adsorbent dose and initial MA concentration .Effect of
sharing surface with other analgesic pharmaceuticals at different pH also studied. The
adsorption of MA was found to be strongly dependent to pH. The Freundlich isotherm model
showed a good fit to the equilibrium adsorption data. From Dubinin–Radushkevich model the
mean free