Preferred Language
Articles
/
bsj-6421
Fabrication of Electrospun Nanofibers Membrane for Emulsified Oil Removal from Oily Wastewater
...Show More Authors

The electrospun nanofibers membranes have gained considerable interest in water filtration applications. In this work, the fabrication and characterization of the electrospun polyacrylonitrile-based nonwoven nanofibers membrane are reported. Then, the membrane's performance and antifouling properties were evaluated in removing emulsified oil using a cross flow filtration system. The membranes were fabricated with different polyacrylonitrile (PAN) concentrations (8, 11, and 14 wt. %) in N, N-Dimethylformamide (DMF) solvent resulted in various average fiber sizes, porosity, contact angle, permeability, oil rejection, and antifouling properties. Analyses of surface morphology of the fabricated membranes before and after oil removal revealed increasing the fiber size, decreasing the fouling amount, and increasing the permeate flux. On the other hand, decreasing the fiber size resulting in increases the oil rejection. It was observed that 11 wt. % PAN based nonwoven nanofiber membrane was the optimum membrane for emulsified oil removal due to its good porosity, permeability with good oil rejection. In addition, fouled nonwoven nanofiber membrane cleaning was done by backwashing technique using warm distilled water which was effective in retaining the membrane permeability and oil rejection for 7 times. The obtained results confirmed an efficient performance of the fabricated nanofibers membrane for oil-water separation with oil rejection percentage of 92.5% and a permeate flux of 120 LMH. 

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 31 2025
Journal Name
The Iraqi Geological Journal
Evaluation of Machine Learning Techniques for Missing Well Log Data in Buzurgan Oil Field: A Case Study
...Show More Authors

The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Effect of Job Burnout on Employee Performance: Field Research in the General Company for Vegetable Oil Industry
...Show More Authors

Abstract

      This research aims to know the effect of job burnout in the worker’s performance. The researcher presented a theoretical basis for job burnout and the worker's performance. In order to achieve the objectives of the research, a hypothesis was drawn up that determines the nature of the relationship between the independent variable of job burnout and its dimensions (reduced personal accomplishment, depersonalization, Emotional Exhaustion) and variable dependent performance of workers dimensions (productivity, job satisfaction, organizational commitment, creativity), And to represent the volume of this community according to (de Morgan, D. Morgan) glo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 31 2021
Journal Name
Iraqi Geological Journal
Development of 1D-Synthetic Geomechanical Well Logs for Applications Related to Reservoir Geomechanics in Buzurgan Oil Field
...Show More Authors

Knowledge of the distribution of the rock mechanical properties along the depth of the wells is an important task for many applications related to reservoir geomechanics. Such these applications are wellbore stability analysis, hydraulic fracturing, reservoir compaction and subsidence, sand production, and fault reactivation. A major challenge with determining the rock mechanical properties is that they are not directly measured at the wellbore. They can be only sampled at well location using rock testing. Furthermore, the core analysis provides discrete data measurements for specific depth as well as it is often available only for a few wells in a field of interest. This study presents a methodology to generate synthetic-geomechani

... Show More
Crossref (1)
Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Hydraulic Flow Units for Jeribe Reservoir in Jambour Oil Field Applying Flow Zone Indicator Method
...Show More Authors

The Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units.    This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized poros

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Mon Aug 18 2025
Journal Name
Soil And Sediment Contamination: An International Journal
Remediation Prediction of Contaminated Soil with Crude Oil Using the Optimized Remediation Method for the Iraqi Environment
...Show More Authors

Large quantities of petroleum-contaminated soil are generated with increased global energy consumption and crude oil production. This theoretical study evaluates the treatment of 1 ton of petroleum-contaminated soil using seven methods: incineration, physical washing, chemical washing, thermal pyrolysis, Fenton-oxidation-pyrolysis, the biological treatment, and asphaltenes. Data were based on experimental results from the Nahran Bin Omar oil lake in Basra Governorate, Iraq, (2019–2021). The methods were compared by waste generation, treatment cost, and duration. Results indicate that using petroleum-contaminated soil as a raw material for asphalt manufacturing is most beneficial since it is sold as a raw material. Incineration is faster a

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Sep 02 2024
Journal Name
Journal Of The American Oil Chemists' Society
Direct application of tungstosilicic acid hydrate for the treatment of high free fatty acid in acidic crude palm oil and for biodiesel production
...Show More Authors
Abstract<p>This study explored the use of industrial acidic crude palm oil (ACPO) for biodiesel production, facing a significant obstacle due to its high free fatty acid (FFA) content, which complicates the biodiesel production process. Typically, esterification is employed to convert FFAs into fatty acid methyl ester (FAME). Herein, the effectiveness of tungstosilicic acid hydrate (TSAH) as an unsupported heteropoly acid (HPA) catalyst for FFA esterification in ACPO was investigated. The FFA content was reduced from 8.43% to 0.95% under optimum conditions (4 wt% catalyst dosage, a methanol to oil molar ratio of 10:1, 150 min and a temperature of 60°C). Noteworthy, the TSAH catalyst showed stability over 7</p> ... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Boron Removal by Adsorption onto Different Oxides
...Show More Authors

A research was conducted to determine the feasibility of using adsorption process to remove boron from aqueous solutions using batch technique. Three adsorbent materials; magnesium, aluminum and iron oxide were investigated to find their abilities for boron removal. The effects of operational parameters on boron removal efficiency for each material were determined.
The experimental results revealed that maximum boron removal was achieved at pH 9.5 for magnesium oxide and 8 for aluminum and iron oxide. The percentage of boron adsorbed onto magnesium,aluminum and iron oxide reaches up to 90, 42.5 and 41.5% respectively under appropriate conditions. Boron concentration in effluent water after adsorption via magnesium oxide comply with th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Environmental Engineering And Management Journal
TREATMENT OF DAIRY WASTEWATER BY ELECTROCOAGULATION AND ULTRASONIC-ASSISTED ELECTROCOAGULATION METHODS
...Show More Authors

View Publication
Crossref (6)
Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
Evaluating the Efficiency of some Wastewater Treatment Plants in Najaf Governorate
...Show More Authors
Abstract<p>Although there are many wastewater treatment plants, we still suffer from many problems resulting from a lack of experience or technical operating problems. In this research, the service’s efficiency is evaluated according to the design laws required for small factories in the province of Najaf, which works with filtering technology through point filtration, the old project in the Al-Baraka plant, and the second works. Within the biological treatment mbbr + activated sludge, which is a biomass technology where samples were taken from both plants and annual values of the pollutant rate after treatment in the old Al-Baraka plant project COD 64 mg/L and the demand for biochemical oxyge</p> ... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sat Mar 31 2018
Journal Name
Journal Of Engineering
Effecting of pH Parameter on Simulated Wastewater Treatment Using Electrocoagulation Method
...Show More Authors

The aim of the present research is to investigate the effecting of pH parameter on the feasibility of lead removal from simulated wastewater using an electrochemical system. Electrocoagulation method is one of electrochemical technology which is used widely to treat industrial wastewater. Parameters affecting this operation, such as initial metal concentration, applied current, stirrer speed, and contact time of electroprocessing were taken as 155ppm, 1.5 Ampere, 150 rpm, 60 minutes respectively. While pH of the simulated wastewater was in the range of  2 to 12 in the experiments. It was found from the results that pH is an important parameter affecting lead removal operation. The best value of pH parameter is appro

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (16)
Scopus Crossref