Knowledge of the distribution of the rock mechanical properties along the depth of the wells is an important task for many applications related to reservoir geomechanics. Such these applications are wellbore stability analysis, hydraulic fracturing, reservoir compaction and subsidence, sand production, and fault reactivation. A major challenge with determining the rock mechanical properties is that they are not directly measured at the wellbore. They can be only sampled at well location using rock testing. Furthermore, the core analysis provides discrete data measurements for specific depth as well as it is often available only for a few wells in a field of interest. This study presents a methodology to generate synthetic-geomechanical well logs for the production section of the Buzurgan oil field, located in the south of Iraq, using an artificial neural network. An issue with the area of study is that shear wave velocities and pore pressure measurements in some wells are missing or incomplete possibly for cost and time-saving purposes. The unavailability of these data can potentially create inaccuracies in reservoir characterization n and production management. To overcome these challenges, this study presents two developed models for estimating the shear wave velocity and pore pressure using ANN techniques. The input parameters are conventional well logs including compressional wave, bulk density, and gamma-ray. Also, this study presents a construction of 1-D mechanical earth model for the production section of Buzurgan oil field which can be used for optimizing the selected mud weights with less wellbore problems (less nonproductive time. The results showed that artificial neural network is a powerful tool in determining the shear wave velocity and formation pore pressure using conventional well logs. The constructed 1D MEM revealed a high matching between the predicted wellbore instabilities and the actual wellbore failures that were observed by the caliper log. The majority of borehole enlargements can be attributed to the formation shear failures due to an inadequate selection of mud weights while drilling. Hence, this study presents optimum mud weights (1.3 to 1.35 g/cc) that can be used to drill new wells in the Buzurgan oil field with less expected drilling problems.
IMPLICATION OF GEOMECHANICAL EVALUATION ON TIGHT RESERVOIR DEVELOPMENT / SADI RESERVOIR HALFAYA OIL FIELD
The present study includes the evaluation of petrophysical properties and lithological examination in two wells of Asmari Formation in Abu Ghirab oil field (AG-32 and AG-36), Missan governorate, southeastern Iraq. The petrophysical assessment was performed utilizing well logs information to characterize Asmari Formation. The well logs available, such as sonic, density, neutron, gamma ray, SP, and resistivity logs, were converted into computerized data using Neuralog programming. Using Interactive petrophysics software, the environmental corrections and reservoir parameters such as porosity, water saturation, hydrocarbon saturation, volume of bulk water, etc. were analyzed and interpreted. Lithological, mineralogical, and matrix recogniti
... Show MoreTight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic met
... Show MoreThe characterizations of reservoir require reliable knowledge of certain fundamental reservoir properties. Log measurements can define or at least infer these properties: resistivity, porosity, shale volume, lithology, and water, oil, or gas saturation and permeability. The current study represents evaluation of petrophysical properties in well LU-12 for Zubair Formation in Luhais Oil Field, southern Iraq. The petrophysical evaluation was based on geophysical well logs data to delineate the reservoir characteristics of Zubair Formation. The available geophysical well logs such as (sonic, density, neutron, gamma ray, SP, and resistivity logs) are digitized using the Didger software. The environmental corrections and petrophysical paramete
... Show MoreThis study aims to determine the petrophysical characteristics of the three wells in the Kifl Oilfield, central Iraq. The well logs were used to characterize hydrocarbon reservoirs to assess the hydrocarbon prospectivity, designate hydrocarbon and water-bearing zones, and determine the Nahr Umr Formation's petrophysical parameters. The Nahr Umr reservoir mainly consists of sandstone at the bottom and has an upper shale zone containing a small proportion of oil. The geophysical logs data from three oil wells include gamma-ray, resistivity, neutron, density, acoustic, and spontaneous potential logs. A gamma-ray log was employed for lithology differentiation, and a resistivity log was used to determine the response of distinct zones
... Show MoreThis study aims to set up a 3D static model to characterize and evaluate Mishrif Formation which represents the main reservoir in Buzurgan Oilfield, southern Iraq. Six wells have been selected to set up structural, facies and petrophysical models of Mishrif reservoir by using Petrel Software. The structural model has been built based on the structural contour map of the top of Mishrif Formation, which derived from seismic interpretation, and by using different static algorithms in Petrel Software. The structural model showed that the Buzurgan Oilfield represents an anticlinal fold with two domes north and south separated by a depression. The petrophysical model included the porosity model and water saturation model. Th
... Show MoreIntelligent or smart completion wells vary from conventional wells. They have downhole flow control devices like Inflow Control Devices (ICD) and Interval Control Valves (ICV) to enhance reservoir management and control, optimizing hydrocarbon output and recovery. However, to explain their adoption and increase their economic return, a high level of justification is necessary. Smart horizontal wells also necessitate optimizing the number of valves, nozzles, and compartment length. A three-dimensional geological model of the As reservoir in AG oil field was used to see the influence of these factors on cumulative oil production and NPV. After creating the dynamic model for the As reservoir using the program Petrel (2017.4), we
... Show MoreThe estimation of the initial oil in place is a crucial topic in the period of exploration, appraisal, and development of the reservoir. In the current work, two conventional methods were used to determine the Initial Oil in Place. These two methods are a volumetric method and a reservoir simulation method. Moreover, each method requires a type of data whereet al the volumetric method depends on geological, core, well log and petrophysical properties data while the reservoir simulation method also needs capillary pressure versus water saturation, fluid production and static pressure data for all active wells at the Mishrif reservoir. The petrophysical properties for the studied reservoir is calculated using neural network technique
... Show MoreThis study aims to evaluate reservoir characteristics of Hartha Formation in Majnoon oil field based on well logs data for three wells (Mj-1, Mj-3 and Mj-11). Log interpretation was carried out by using a full set of logs to calculate main petrophysical properties such as effective porosity and water saturation, as well as to find the volume of shale. The evaluation of the formation included computer processes interpretation (CPI) using Interactive Petrophysics (IP) software. Based on the results of CPI, Hartha Formation is divided into five reservoir units (A1, A2, A3, B1, B2), deposited in a ramp setting. Facies associations is added to well logs interpretation of Hartha Formation, and was inferred by a microfacies analysis of th
... Show More