Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to evaluate the pronunciation of the Arabic alphabet. Voice data from six school children are recorded and used to test the performance of the proposed method. The padding technique has been used to augment the voice data before feeding the data to the CNN structure to developed the classification model. In addition, three other feature extraction techniques have been introduced to enable the comparison of the proposed method which employs padding technique. The performance of the proposed method with padding technique is at par with the spectrogram but better than mel-spectrogram and mel-frequency cepstral coefficients. Results also show that the proposed method was able to distinguish the Arabic alphabets that are difficult to pronounce. The proposed method with padding technique may be extended to address other voice pronunciation ability other than the Arabic alphabets.
Many letters and theses written on the subject of consensus, as well as in measurement,
But we tried to address a topic of consensus
Building a blind measuring guide.
We have tried to explain the meaning of convening, then the statement of consensus in language and terminology and then the statement of measurement
Also, we have shown the types of consensus mentioned by the jurists, and this is how much was in the first topic, either
The second section included the statement of the doctrines of the blind in the matter, and then the evidence of each doctrine and discussed.
We followed it with the most correct opinion statement and concluded the research with some of the conclusions we reached through
search.
In this paper we study the notion of preradical on some subcategories of the category of semimodules and homomorphisms of semimodules.
Since some of the known preradicals on modules fail to satisfy the conditions of preradicals, if the category of modules was extended to semimodules, it is necessary to investigate some subcategories of semimodules, like the category of subtractive semimodules with homomorphisms and the category of subtractive semimodules with ҽҟ-regular homomorphisms.
In this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
The soft sets were known since 1999, and because of their wide applications and their great flexibility to solve the problems, we used these concepts to define new types of soft limit points, that we called soft turning points.Finally, we used these points to define new types of soft separation axioms and we study their properties.
Let R be a commutative ring with identity, and M be unital (left) R-module. In this paper we introduce and study the concept of small semiprime submodules as a generalization of semiprime submodules. We investigate some basis properties of small semiprime submodules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.
Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.
The main goal of this paper is to introduce and study a new concept named d*-supplemented which can be considered as a generalization of W- supplemented modules and d-hollow module. Also, we introduce a d*-supplement submodule. Many relationships of d*-supplemented modules are studied. Especially, we give characterizations of d*-supplemented modules and relationship between this kind of modules and other kind modules for example every d-hollow (d-local) module is d*-supplemented and by an example we show that the converse is not true.
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that
Let R be associative ring with identity and M is a non- zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.