Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to evaluate the pronunciation of the Arabic alphabet. Voice data from six school children are recorded and used to test the performance of the proposed method. The padding technique has been used to augment the voice data before feeding the data to the CNN structure to developed the classification model. In addition, three other feature extraction techniques have been introduced to enable the comparison of the proposed method which employs padding technique. The performance of the proposed method with padding technique is at par with the spectrogram but better than mel-spectrogram and mel-frequency cepstral coefficients. Results also show that the proposed method was able to distinguish the Arabic alphabets that are difficult to pronounce. The proposed method with padding technique may be extended to address other voice pronunciation ability other than the Arabic alphabets.
The support qualitative information regards as an additional step in the process of decision-making where the method following by companies to provide information help in the creation of value because it is very important to deliver information to investors about their stratigies and what happen truly inside the companies i.e. every case relating with the expectations of stockhotslder and the prices of markets depending on those expectation ,and if the matter isn’t that there will be lack of confidence thate couldn’t be backed again. The decisions of the investors effected by security ,economic ,political, psychological, emotional ,and financial factors .
... Show MoreThe Islamic Bank of Al-Nahrain offers a formula for financing the purchase of real estate through a deferred sale contract, through Murabaha to the order to buy, and the payment of the price is in the form of instalments that include (the purchase price of the profit and the mutual agreement on the real estate). This research aims to show the reflection of real estate murabaha on the bank's investments, by measuring the effect of real estate murabaha on the profits achieved by the Islamic Bank of Al-Nahrain Bank. The growth of 'real estate murabaha' realized from the 'amounts granted by Bank X, in addition to analyzing the financial ratios of profitability indicators, including (return on deposits Y2) and for the years (2016 - 20
... Show More
The paper is concerned with, the behavior of the hydrostatic thrust bearings lubricated with liquid-solid lubricants using Einstein viscosity formula, and taking into account the centrifugal force resulting from high speed. Also studied is the effect of the bearing dimensions on the pressure, flow rate, load capacity, shear stress, power consumption and stiffness.
The theoretical results show an increase in load capacity by (8.3%) in the presence of solid graphite particles with concentration of (16%) by weight as compared with pure oil, with increasing shear stress. .
In general the performance of hydrostatic thrust bearings improve for load carrying capacity, volume flow rate,
... Show MoreWe propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St
... Show MoreBackground and purpose: Animal model helps researchers to evaluate new treatment plan for human and understand pathological mechanism involved in a development of disease. The use of rats as an animal model for Alzheimer's research has become a favorite among researchers. Rats are capable in mimicking Alzheimer disease due to their intelligence and quick adaptation to nature. At present there are several methods that can be used to induce Alzheimer's animals, but each method has advantages and disadvantages. We need to learn other methods that can provide many advantages and few disadvantages. The Amyloid-beta 42 (Aβ-42) and Reactive Oxygen Species (ROS) are thought to play an important role in the pathology of Alzheimer’s disease. Th
... Show MoreThe method binery logistic regression and linear discrimint function of the most important statistical methods used in the classification and prediction when the data of the kind of binery (0,1) you can not use the normal regression therefore resort to binary logistic regression and linear discriminant function in the case of two group in the case of a Multicollinearity problem between the data (the data containing high correlation) It became not possible to use binary logistic regression and linear discriminant function, to solve this problem, we resort to Partial least square regression.
In this, search the comparison between binary lo
... Show MoreAbstract:
Witness the current business environment changes rapidly reflected on the performance of the facility wishing to stay , which is no longer style reaction enough to handle installations with their environment , and quickly began to lose its luster with the emergence of a message and the vision of contemporary business environment from a set of parts interacting with each other and the concept of behavioral includes all dimensions of performance, it is imperative to adopt a system installations influence variables and positive interaction through the development of strategic plans and the use of implementation and follow-up strategies to ensure the effectiveness of the method for meas
... Show MoreDeep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreArcHydro is a model developed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic modeling supported by geographic information systems (GIS). Digital Elevation Model (DEM) data have been used to derive hydrological features, which serve as inputs to various models. Currently, elevation data are available from several major sources and at different spatial resolutions. Detailed delineation of drainage networks is the first step for many natural resource management studies. Compared with interpretation from aerial photographs or topographic maps, auto
... Show More