Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers. The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively. These evolutionary-based algorithms are known to be effective in solving optimization problems. The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated. The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features. The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively. The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.
The dynamic thermomechanical properties, sealing ability, and voids formation of an experimental obturation hydroxyapatite-reinforced polyethylene (HA/PE) composite/carrier system were investigated and compared with those of a commercial system [GuttaCore (GC)]. The HA/PE system was specifically designed using a melt-extrusion process. The viscoelastic properties of HA/PE were determined using a dynamic thermomechanical analyser. Human single-rooted teeth were endodontically instrumented and obturated using HA/PE or GC systems, and then sealing ability was assessed using a fluid filtration system. In addition, micro-computed tomography (μCT) was used to quantify apparent voids within the root-canal space. The data were statistically analys
... Show MoreIn recent years, non-oil primary balance indicator has been given considerable financial important in rentier state. It highly depends on this indicator to afford a clear and proper picture of public finance situation in term of appropriate and sustainability in these countries, due to it excludes the effect of oil- rental from compound of financial accounts which provide sufficient information to economic policy makers of how economy is able to create potential added value and then changes by eliminating one sided shades of economy. In Iraq, since, 2004, the deficit in value of this indicator has increased, due to almost complete dependence on the revenues of the oil to finance the budget and the obvious decline of the non-oil s
... Show MoreThis paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show MorePolyaniline organic Semiconductor polymer was prepared by oxidation polymerization by adding hydrochloric acid concentration of 0.1M and potassium per sulfate concentration of 0.2M to 0.1M of aniline at room temperature, the polymer was deposited at glass substrate, the structural and optical properties were studies through UV-VIS, IR, XRD measurements, films have been operated as a sensor of vapor H2SO4 and HCl acids.
Background: The long term survival of dental implants is evaluated by the amount of crestal bone loss around the implants. Some initial loss of bone around dental implants is generally expected. There is reason to believe that reflecting a mucoperiosteal flap promotes crestal bone loss in the initial phase after an implant has been inserted. The surgical placement of a dental implant fixture is constantly changing and in recent years, there has been some interest in developing techniques that minimize the invasive nature of the procedure, with flapless implant surgery being advocated. The purpose of this study was to compare the radiographic level of the peri- implant bone after implant placement between traditional flapped surgery and f
... Show More