Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers. The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively. These evolutionary-based algorithms are known to be effective in solving optimization problems. The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated. The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features. The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively. The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.
Objective: To determine the ability of uVDBP to discern SRNS from steroid-sensitive nephrotic syndrome (SSNS) in Iraqi children. Materials and Methods: This cross-sectional study enrolled children with SRNS (n=31) and SSNS (n=32) from the pediatric nephrology clinic of Babylon Hospital for Maternity and Pediatrics over three months. Patients' characteristics in terms of demographics, clinical data, and urinary investigations were collected. Quantitative analysis of uVDBP levels was undertaken via a commercially available ELISA kit. Results: The median uVDBP values were significantly higher (p-value<0.001) in the SRNS group (median=10.26, IQR=5.91 μg/mL) than in the SSNS group (median=0.953, IQR=4.12 μg/mL). A negative correlati
... Show MoreAryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent ligand for AhR and a known carcinogen. While AhR activation by TCDD leads to significant immunosuppression, how this translates into carcinogenic signal is unclear. Recently, we demonstrated that activation of AhR by TCDD in naïve C57BL6 mice leads to massive induction of myeloid derived-suppressor cells (MDSCs). In the current study, we investigated the role of the gut microbiota in TCDD-mediated MDSC induction. TCDD caused significant alterations in the gut microbiome, such as increases in Prevotella and Lactobacillus, while decreasing Sutterella and Bacteroides. Fecal transplants from TCDD-treated
... Show MoreThe aim of this work is study the partical distribution function g(r12,r1) for Carbon ion cases (C+2,C+3,C+4) in the position space using Hartree-Fock's Wave function, and the partitioning technique for each shell which is represented by Carbon Ions [C+2 (1s22s2)], [C+3 (1s22s)] and [C+4 (1s2)]. A comparision has been made among the three Carbon ions for each shell. A computer programs (MATHCAD ver. 2001i) has been used texcute the results.
The Vulnerable Indian Roofed Turtle Pangshura tecta (Gray, 1831) (Testudines: Geoemydidae) occurs in the Sub-Himalayan lowlands of India, Nepal, Bangladesh, and Pakistan. Little is known about its natural history, no studies have been conducted revealing its natural predators. In this study, a group of Large-billed Crow Corvus macrorhynchos Wagler, 1827 (Passeriformes: Corvidae) was observed hunting and predating on an Indian Roofed Turtle carcass in the bank of river Kuakhai, Bhubaneswar, India. The first record of this predation behaviour is reported and substantiated by photographic evidence.
In this study, we propose a suitable solution for a non-linear system of ordinary differential equations (ODE) of the first order with the initial value problems (IVP) that contains multi variables and multi-parameters with missing real data. To solve the mentioned system, a new modified numerical simulation method is created for the first time which is called Mean Latin Hypercube Runge-Kutta (MLHRK). This method can be obtained by combining the Runge-Kutta (RK) method with the statistical simulation procedure which is the Latin Hypercube Sampling (LHS) method. The present work is applied to the influenza epidemic model in Australia in 1919 for a previous study. The comparison between the numerical and numerical simulation res
... Show MoreMJ Abbas, AK Hussein, Journal of Physical Education, 2019