Preferred Language
Articles
/
bsj-6210
Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers

Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers.  The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively.  These evolutionary-based algorithms are known to be effective in solving optimization problems.  The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated.  The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features.  The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively.  The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
Performance Evaluation of a Triple Concentric Tube Heat Exchanger Using Deionized Water and Oil-40

This study examines experimentally the performance of a horizontal triple concentric tube heat exchanger TCTHE made of copper metal using water as cooling fluid and oil-40 as hot fluid. Hot fluid enters the inner annular tube of the TCTHE in a direction at a temperature of 50, 60 and 70 oC and a flow rate of 20 l/hr. On the other hand, the cooling fluid enters the inner tube and the outer annular tube in the reverse direction (counter current flow) at a temperature of 25 oC and flow rates of 10, 15, 20, 25, 30 and 35 l/hr. The TCTHE is composed of three copper tubes with outer diameters of 34.925 mm, 22.25 mm, and 9.525 mm, and thicknesses of 1.27 mm, 1.143 mm, and 0.762 mm, respectively. TCTHE tube's length was 670

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Development an Anomaly Network Intrusion Detection System Using Neural Network

Most intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Sep 23 2022
Journal Name
Specialusis Ugdymas
Intrusion Detection System Techniques A Review

With the high usage of computers and networks in the current time, the amount of security threats is increased. The study of intrusion detection systems (IDS) has received much attention throughout the computer science field. The main objective of this study is to examine the existing literature on various approaches for Intrusion Detection. This paper presents an overview of different intrusion detection systems and a detailed analysis of multiple techniques for these systems, including their advantages and disadvantages. These techniques include artificial neural networks, bio-inspired computing, evolutionary techniques, machine learning, and pattern recognition.

Publication Date
Wed Feb 01 2023
Journal Name
Journal Of Engineering
An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers

With the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Revue D'intelligence Artificielle
Performance Evaluation of SDN DDoS Attack Detection and Mitigation Based Random Forest and K-Nearest Neighbors Machine Learning Algorithms

Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne

... Show More
Scopus (8)
Crossref (6)
Scopus Crossref
View Publication
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Efficiency of Human Resources Information System and Its Impact on The Level Effectiveness of Employees Performance Appraisal System / Practical Research on Ministry of Higher Education and Scientific Research

Abstract

The research aims to determine the role of the efficiency of Human Resources Information System in the effectiveness of Employees Performance Appraisal System in the Ministry of Higher Education and Scientific Research / Center for the ministry, it was touching the researchers need the ministry to devise methods that employ outputs Human Resources Information System in the organization surveyed for the development of methods and levels of process evaluate the performance of its employees, in order to identify the extent of the role played by human resources information system in the process of assessing the performance of employees, we raised the question of the President as follows:

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Review of Smishing Detection Via Machine Learning

     Smishing is a cybercriminal attack targeting mobile Short Message Service (SMS) devices that contains a malicious link, phone number, or email. The attacker intends to use this message to steal the victim's sensitive information, such as passwords, bank account details, and credit cards. One method of combating smishing is to raise awareness and educate users about the various tactics used by SMS phishers. But even so, this method has been criticized for becoming inefficient because smishing tactics are continually evolving. A more promising anti-smishing method is to use machine learning. This paper introduces a number of machine learning algorithms that can be used for detecting smishing. Furthermore, the differences and simil

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Nov 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Using Public and Private Cloud Computing in developing the Evaluation System of annual employees' performance at Iraqi Universities: A comparative study

Abstract

Business organizations are using the technological innovations like cloud computing (CC) as a developmental platform in order to improve the performance of their information systems. In that context, our paper discusses know-how in employing the public and private CC to serve as platforms to develop the evaluation system of annual employees' performance (ESAEP) at Iraqi universities. Therefore, we ask the paper question which is Is it possible to adopt the innovative solutions of ICTs (Like: public and private CC) for finding the developmental vision about management information systems at business organizations?”. In addition, the paper aim

... Show More
Crossref (1)
Crossref
View Publication Preview PDF