The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the sink. By utilizing Intel Berkeley Research Lab (IBRL) dataset, the efficiency of the proposed method was measured. The experimental findings illustrate the benefits of the proposed method as it reduces the overhead on the sensor node level up to 1.25% in remaining data and reduces the energy consumption up to 93% compared to prefix frequency filtering (PFF) and ATP protocols.
Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through tha
... Show MoreBilinear interpolation and use of perceptual color spaces (HSL, HSV, LAB, and LUV) fusion techniques are presented to improve spatial and spectral characteristics of the multispectral image that has a low resolution to match the high spatial resolution of a panchromatic image for different satellites image data (Orbview-3 and Landsat-7) for the same region. The Signal-to-Noise Ratio (SNR) fidelity criterion for achromatic information has been calculated, as well as the mean color-shifting parameters that computed the ratio of chromatic information loss of the RGB compound inside each pixel to evaluate the quality of the fused images. The results showed the superiority of HSL color space to fuse images over the rest of the spac
... Show More The most likely fusion reaction to be practical is Deuterium and Helium-3 (ð·âˆ’ð»ð‘’
3 ), which is highly desirable because both Helium -3 and Deuterium are stable and the reaction produces a 14 ð‘€ð‘’𑉠proton instead of a neutron and the proton can be shielded by magnetic fields. The strongly dependency of the basically hot plasma parameters such as reactivity, reaction rate, and energy for the emitted protons, upon the total cross section, make the problems for choosing the desirable formula for the cross section, the main goal for our present work.
Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreIn this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent root-
... Show MoreIn this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent r
... Show MoreThe global oil market is one of the most important markets in the world and occupies especially for countries consuming and producing countries, and the status of understanding of the mechanism for determining prices in the market help to stand on many factors affecting oil demand and supply of oil and geopolitical factors, climate and alternative sources of energy .. etc. factors, and that the main objective of the research is to study the causes and results left behind by the oil price shocks in the world market, and the movement of these factors be through a cycle of energy that explain the strength of competition between these factors and their effects on prices, when demand increases evolution Large image leads to significan
... Show MoreAbstract:
Interest in the topic of prediction has increased in recent years and appeared modern methods such as Artificial Neural Networks models, if these methods are able to learn and adapt self with any model, and does not require assumptions on the nature of the time series. On the other hand, the methods currently used to predict the classic method such as Box-Jenkins may be difficult to diagnose chain and modeling because they assume strict conditions.
... Show More
The current research aims at: - Identifying the role played by the leadership in empowerment and organizational learning abilities and their reflection on the knowledge capital, and the extent to which these concepts can be applied effectively at Wasit University. The problem of research .... In a series of questions: The most important is that the dimensions leadership empowerment and distance learning organizational capacity correlation relationship and impact and significant statistical significance with the capital knowledge.
To understand the nature of the relationship and the impact between the variables, leadership was adopted by empowerment as the fir
... Show More