Preferred Language
Articles
/
bsj-6086
Perceptually Important Points-Based Data Aggregation Method for Wireless Sensor Networks

The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the sink. By utilizing Intel Berkeley Research Lab (IBRL) dataset, the efficiency of the proposed method was measured. The experimental findings illustrate the benefits of the proposed method as it reduces the overhead on the sensor node level up to 1.25% in remaining data and reduces the energy consumption up to 93% compared to prefix frequency filtering (PFF) and ATP protocols.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of weighted estimated method and proposed method (BEMW) for estimation of semi-parametric model under incomplete data

Generally, statistical methods are used in various fields of science, especially in the research field, in which Statistical analysis is carried out by adopting several techniques, according to the nature of the study and its objectives. One of these techniques is building statistical models, which is done through regression models. This technique is considered one of the most important statistical methods for studying the relationship between a dependent variable, also called (the response variable) and the other variables, called covariate variables. This research describes the estimation of the partial linear regression model, as well as the estimation of the “missing at random” values (MAR). Regarding the

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Oct 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Estimation Multivariate data points in spatial statistics with application

This paper  deals  to how to estimate points non measured spatial data when the number of its terms (sample spatial) a few, that are not preferred for the estimation process, because we also know that whenever if the data is large, the estimation results of the points non measured to be better and thus the variance estimate less, so the idea of this paper is how to take advantage of the data other secondary (auxiliary), which have a strong correlation with the primary data (basic) to be estimated single points of non-measured, as well as measuring the variance estimate, has been the use of technique Co-kriging in this field to build predictions spatial estimation process, and then we applied this idea to real data in th

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Nov 12 2014
Journal Name
Wireless Personal Communications
Scopus (19)
Crossref (14)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Jul 01 2022
Journal Name
Iraqi Journal Of Science
Multi-layer Multi-objective Evolutionary Algorithm for Adjustable Range Set Covers Problem in Wireless Sensor Networks

Establishing complete and reliable coverage for a long time-span is a crucial issue in densely surveillance wireless sensor networks (WSNs). Many scheduling algorithms have been proposed to model the problem as a maximum disjoint set covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors into several disjoint subsets. One subset is assigned to be active, whereas, all remaining subsets are set to sleep. An extension to the maximum disjoint set covers problem has also been addressed in literature to allow for more advance sensors to adjust their sensing range. The problem, then, is extended to finding maximum number of overlapped set covers. Unlike all related works which concern with the disc sensing model, the cont

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Proposed Security Models for Node-level and Network-level Aspects of Wireless Sensor Networks Using Machine Learning Techniques

     As a result of the pandemic crisis and the shift to digitization, cyber-attacks are at an all-time high in the modern day despite good technological advancement. The use of wireless sensor networks (WSNs) is an indicator of technical advancement in most industries. For the safe transfer of data, security objectives such as confidentiality, integrity, and availability must be maintained. The security features of WSN are split into node level and network level. For the node level, a proactive strategy using deep learning /machine learning techniques is suggested. The primary benefit of this proactive approach is that it foresees the cyber-attack before it is launched, allowing for damage mitigation. A cryptography algorithm is put

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Exploring Important Factors in Predicting Heart Disease Based on Ensemble- Extra Feature Selection Approach

Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Aggregation of Accounting information between differentiated accounting systems ( Case Study )

The purpose of the research is to present a proposed accounting system model for converting and aggregating accounting information within the framework of the differentiated accounting systems, and the research methodology consists of: The research problem is the existence of differentiated and dispersed accounting systems that operate within governmental economic units and at the same time seek to achieve a unified vision and goals for the organization, and the central research hypothesis is the possibility of conducting the process of conversion accounting information from the government accounting system to the unified accounting system, and then aggregate those systems. The research was conducted at the College of Administrat

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
An Optimised Method for Fetching and Transforming Survey Data based on SQL and R Programming Language

The development of information systems in recent years has contributed to various methods of gathering information to evaluate IS performance. The most common approach used to collect information is called the survey system. This method, however, suffers one major drawback. The decision makers consume considerable time to transform data from survey sheets to analytical programs. As such, this paper proposes a method called ‘survey algorithm based on R programming language’ or SABR, for data transformation from the survey sheets inside R environments by treating the arrangement of data as a relational format. R and Relational data format provide excellent opportunity to manage and analyse the accumulated data. Moreover, a survey syste

... Show More
Crossref (1)
Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Jan 28 2019
Journal Name
Soft Computing
Scopus (10)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sun Aug 24 2014
Journal Name
Wireless Personal Communications
Scopus (22)
Crossref (14)
Scopus Clarivate Crossref
View Publication