Regression testing being expensive, requires optimization notion. Typically, the optimization of test cases results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test cases, together with a concurrent decrease in computational runtime. However, when examining the fault detection capacity along with other parameters, is required, the method falls short. The current research is motivated by this concept and proposes a multifactor algorithm incorporated with genetic operators and powerful features. A factor-based prioritizer is introduced for proper handling of tied test cases that emerged while implementing re-ordering. Besides this, a Cost-based Fine Tuner (CFT) is embedded in the study to reveal the stable test cases for processing. The effectiveness of the outcome procured through the proposed minimization approach is anatomized and compared with a specific heuristic method (rule-based) and standard genetic methodology. Intra-validation for the result achieved from the reduction procedure is performed graphically. This study contrasts randomly generated sequences with procured re-ordered test sequence for over '10' benchmark codes for the proposed prioritization scheme. Experimental analysis divulged that the proposed system significantly managed to achieve a reduction of 35-40% in testing effort by identifying and executing stable and coverage efficacious test cases at an earlier phase.
The laboratory experiment was conducted in the laboratories of the Musayyib Bridge Company for Molecular Analyzes in the year 2021-2022 to study the molecular analysis of the inbreed lines and their hybrids F1 to estimate the genetic variation at the level of DNA shown by the selected pure inbreed lines and the resulting hybrids F1 of the flowering gene. Five pure inbreed lines of maize were selected (ZA17WR) Late, ZM74, Late, ZM19, Early ZM49WZ (Zi17WZ, Late, ZM49W3E) and their resulting hybrids, according to the study objective, from fifteen different inbreed lines with flowering time. The five inbreed lines were planted for four seasons (spring and fall 2019) and (spring and fall 2
A simple reverse-phase high performance liquid chromatographic method for the simultaneous analysis (separation and quantification) of furosemide (FURO), carbamazepine (CARB), diazepam (DIAZ) and carvedilol (CARV) has been developed and validated. The method was carried out on a NUCLEODUR® 100-5 C18ec column (250 x 4.6 mm, i. d.5μm), with a mobile phase comprising of acetonitrile: deionized water (50: 50 v/v, pH adjusted to 3.6 ±0.05 with acetic acid) at a flow rate 1.5 mL.min-1 and the quantification was achieved at 226 nm. The retention times of FURO, CARB, DIAZ and CARV were found to be 1.90 min, 2.79 min, 5.39 min and 9.56 min respectively. The method was validated in terms of linearity, accuracy, precision, limit of detection and li
... Show MoreAccurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty
... Show MoreThis work aims to enhance acoustic and thermal insulation properties for polymeric composite by adding nanoclay and rock wool as reinforcement materials with different rations. A polymer blend of (epoxy+ polyester) as matrix materials was used. The Hand lay-up technique was used to manufacture the castings. Epoxy and polyester were mixed at different weight ratios involving (50:50, 60:40, 70:30, 80:20, and 90:10) wt. % of (epoxy: polyester) wt. % respectively. Impact tests for optimum sample (OMR), caustic and thermal insulation tests were performed. Nano clay (Kaolinite) with ratios ( 5 and 7.5% ) wt.% , also hybrid reinforcement materials involving (Kaolite 5 & 7.5 % wt.% + 10% volume fraction of rockwool ) were added as reinforcem
... Show MoreEFFECT OF SPRAYING IRON AND ZINC CONCENTRATIONS IN GRAIN AND LEAF CONTENT FOR TWO VARIETIES OF WHEAT CROP
Nanoparticles (NPs) based techniques have shown great promises in all fields of science and industry. Nanofluid-flooding, as a replacement for water-flooding, has been suggested as an applicable application for enhanced oil recovery (EOR). The subsequent presence of these NPs and its potential aggregations in the porous media; however, can dramatically intensify the complexity of subsequent CO2 storage projects in the depleted hydrocarbon reservoir. Typically, CO2 from major emitters is injected into the low-productivity oil reservoir for storage and incremental oil recovery, as the last EOR stage. In this work, An extensive serious of experiments have been conducted using a high-pressure temperature vessel to apply a wide range of CO2-pres
... Show More