This research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB), and Support Vector Machine (SVM) techniques. CART gives clear results with high accuracy between the six supervised algorithms. It is worth noting that the preprocessing steps take remarkable efforts to handle this type of data, since its pure data set has so many null values of a ratio 94.8%, then it becomes 0% after achieving the preprocessing steps. Then, in order to apply CART algorithm, several determined tests were assumed as classes. The decision to select the tests which had been assumed as classes were depending on their acquired accuracy. Consequently, enabling the physicians to trace and connect the tests result with each other, which extends its impact on patients’ health.
The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show MoreIn this paper, image compression technique is presented based on the Zonal transform method. The DCT, Walsh, and Hadamard transform techniques are also implements. These different transforms are applied on SAR images using Different block size. The effects of implementing these different transforms are investigated. The main shortcoming associated with this radar imagery system is the presence of the speckle noise, which affected the compression results.
This research deals with the fact that arts exit from their familiar context in practice and enter in the context of the fantasy and exoticism picture. In order to understand the theatrical phenomenon and know the way of its production of the fantasy picture, especially the acting performance in its transitions between the real and fantasy. This study consists of: an introduction of the research in which the researcher presented the research problem, importance and objectives.
The theoretical framework dealt with founding a theoretical part for the research consisting of two sections: the first (fantasy: the concept and the working) and the second (techniques of acting perfo
... Show MoreSpatial data analysis is performed in order to remove the skewness, a measure of the asymmetry of the probablitiy distribution. It also improve the normality, a key concept of statistics from the concept of normal distribution “bell shape”, of the properties like improving the normality porosity, permeability and saturation which can be are visualized by using histograms. Three steps of spatial analysis are involved here; exploratory data analysis, variogram analysis and finally distributing the properties by using geostatistical algorithms for the properties. Mishrif Formation (unit MB1) in Nasiriya Oil Field was chosen to analyze and model the data for the first eight wells. The field is an anticline structure with northwest- south
... Show MoreThere are many tools and S/W systems to generate finite state automata, FSA, due to its importance in modeling and simulation and its wide variety of applications. However, no appropriate tool that can generate finite state automata, FSA, for DNA motif template due to the huge size of the motif template. In addition to the optional paths in the motif structure which are represented by the gap. These reasons lead to the unavailability of the specifications of the automata to be generated. This absence of specifications makes the generating process very difficult. This paper presents a novel algorithm to construct FSAs for DNA motif templates. This research is the first research presents the problem of generating FSAs for DNA motif temp
... Show MoreBackground: preparation of root canals is an important step in root canal treatment. Mechanical instrumentation of root canals cause an irregular layer of debris, known as the smear layer. As a result, several studies reported that preferring the removal of the smear layer. Objective: To study the influence of the energy (100 mJ) of Erbium, Chromium: Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser at short pulse duration (60 μs) on smear layer removal of apical third after using Photon induced photoacoustic streaming technique. Materials and methods: Eighteen straight single-rooted mandibular premolars were used. The roots length were uniform to 14mm from the anatomic apex and
... Show MoreAssociation rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.
The amount of protein in the serum depends on the balance between the rate of its synthesis, and that of its catabolism or loss. Abnormal metabolism may result from nutritional deficiency, enzyme deficiency, abnormal secretion of hormones, or the actions of drugs and toxins. Renal cancer is the third most common malignancy of the genitourinary system, and accounts for 3% of adult malignancies globally. Total serum proteins were measured in malignant kidney tumor, benign kidney tumors, and non tumoral kidney diseases patient groups, as well as in healthy individuals. A significant decrease (p< 0.001) of total serum protein levels in patients with malignant kidney tumors when compared with those of benign tumors, non tumoral diseases, and hea
... Show MoreA precise evaluation of caries excavation endpoint is essential in clinical and laboratory investigations. Caries invasion differentiates dentin into structurally altered layers. This study assessed these changes using Raman spectroscopy and Vickers microhardness. Ten permanent molars with occlusal and proximal carious lesions were assessed and compared at 130 points utilizing four Raman spectroscopic peaks: phosphate v1 at 960 cm−1, amide I (1650 cm−1), amide III (1235 cm−1) and the C-H bond of the pyrrolidine ring (1450 cm−1). The phosphate-to-amide I peak ratio and collagen integrity peak ratio (amide III: C-H bond) of carious zones were calculated and compared in both lesions. The former ratio was correlated to 130 Vicke
... Show More