This research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB), and Support Vector Machine (SVM) techniques. CART gives clear results with high accuracy between the six supervised algorithms. It is worth noting that the preprocessing steps take remarkable efforts to handle this type of data, since its pure data set has so many null values of a ratio 94.8%, then it becomes 0% after achieving the preprocessing steps. Then, in order to apply CART algorithm, several determined tests were assumed as classes. The decision to select the tests which had been assumed as classes were depending on their acquired accuracy. Consequently, enabling the physicians to trace and connect the tests result with each other, which extends its impact on patients’ health.
Biosignal analysis is one of the most important topics that researchers have tried to develop during the last century to understand numerous human diseases. Electroencephalograms (EEGs) are one of the techniques which provides an electrical representation of biosignals that reflect changes in the activity of the human brain. Monitoring the levels of anesthesia is a very important subject, which has been proposed to avoid both patient awareness caused by inadequate dosage of anesthetic drugs and excessive use of anesthesia during surgery. This article reviews the bases of these techniques and their development within the last decades and provides a synopsis of the relevant methodologies and algorithms that are used to analyze EEG sig
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MorePermanent deformation in asphalt concrete pavements is pervasive distress [1], influenced by various factors such as environmental conditions, traffic loading, and mixture properties. A meticulous investigation into these factors has been conducted, yielding a robust dataset from uniaxial repeated load tests on 108 asphalt concrete samples. Each sample underwent systematic evaluation under varied test temperatures, loading conditions, and mixture properties, ensuring the data’s comprehensiveness and reliability. The materials used, sourced locally, were selected to enhance the study ʼs relevance to pavement constructions in hot climate areas, considering different asphalt cement grades and con- tents to understand material variability ef
... Show MoreThe general trend in Iraqi banks is focused towards the application of international financial reporting standards, especially the international financial reporting standard IFRS 9 “Financial Instruments”, in addition to the directives issued on the Central Bank of Iraq’s instructions for the year 2018 regarding the development of expected credit losses models, and not to adhere to a specific method for calculating these losses and authorizing the banks’ departments to adopt the method of calculating losses that suits the nature of the bank’s activity and to be consistent in its use from time to time. The research problem revolves around the different methodologies for calculatin
... Show MoreThe emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA
... Show MoreSeveral Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show MoreTrigeminal Neuralgia (TN) is one of the most commonly painful cranial neuralgia characterized by paroxysmal attacks as short lasting facial pain along the trigeminal nerve branches. The aim of the present study is to innovate a biochemical relationship between (melatonin, GALNT12 and Zn) and TN and also to examine the biochemical action of tegretol (carbamazepine) as a treatment on the above biochemical parameters. Blood samples were collected from fifty four (54) trigeminal neuralgia patients diagnosed by magnetic radiation image (MRI). Patients were classified into four groups: G3 (40- 70) years composed of (12) diagnosed male (without treatment), G4 (48- 75) years composed of (12) diagnosed female (without treatment), G5 (34- 76)
... Show MoreUnconfined Compressive Strength is considered the most important parameter of rock strength properties affecting the rock failure criteria. Various research have developed rock strength for specific lithology to estimate high-accuracy value without a core. Previous analyses did not account for the formation's numerous lithologies and interbedded layers. The main aim of the present study is to select the suitable correlation to predict the UCS for hole depth of formation without separating the lithology. Furthermore, the second aim is to detect an adequate input parameter among set wireline to determine the UCS by using data of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud, Nahr Um
... Show More