The present paper studies the generalized Φ- recurrent of Kenmotsu type manifolds. This is done to determine the components of the covariant derivative of the Riemannian curvature tensor. Moreover, the conditions which make Kenmotsu type manifolds to be locally symmetric or generalized Φ- recurrent have been established. It is also concluded that the locally symmetric of Kenmotsu type manifolds are generalized recurrent under suitable condition and vice versa. Furthermore, the study establishes the relationship between the Einstein manifolds and locally symmetric of Kenmotsu type manifolds.
In this article, the additivity of higher multiplicative mappings, i.e., Jordan mappings, on generalized matrix algebras are studied. Also, the definition of Jordan higher triple product homomorphism is introduced and its additivity on generalized matrix algebras is studied.
In modern hydraulic control systems, the trend in hydraulic power applications is to improve efficiency and performance. “Proportional valve” is generally applied to pressure, flow and directional-control valves which continuously convert a variable input signal into a smooth and proportional hydraulic output signal. It creates a variable resistance (orifice) upstream and downstream of a hydraulic actuator, and is meter in/meter out circuit and hence pressure drop, and power losses are inevitable. If velocity (position) feedback is used, flow pattern control is possible. Without aforementioned flow pattern, control is very “loose” and relies on “visual” feed back by the operator. At this point, we should examine how this valv
... Show MoreA new Species of the Cerambycinae belonging to the genus Hesperophanes was found new to the fauna of Iraq and Science. H. testaceus was studied in details and the male genitalia were illustrated. Type's paratypes and the locality of this newly described Species were mentioned.
Let M be ,-ring and X be ,M-module, Bresar and Vukman studied orthogonal
derivations on semiprime rings. Ashraf and Jamal defined the orthogonal derivations
on -rings M. This research defines and studies the concepts of orthogonal
derivation and orthogonal generalized derivations on ,M -Module X and introduces
the relation between the products of generalized derivations and orthogonality on
,M -module.
In this paper we introduce a new type of functions called the generalized regular
continuous functions .These functions are weaker than regular continuous functions and
stronger than regular generalized continuous functions. Also, we study some
characterizations and basic properties of generalized regular continuous functions .Moreover
we study another types of generalized regular continuous functions and study the relation
among them
Richards in 1996 introduced the idea of leftly e ─ core transference by using many conditions, including that the difference between the colums (k) is greater than of weight. In this paper, we generalized this idea without the condition of Richards depending on the mathematical and computational solution.
A space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.
Faintly continuous (FC) functions, entitled faintly S-continuous and faintly δS-continuous functions have been introduced and investigated via a -open and -open sets. Several characterizations and properties of faintly S-continuous and faintly -Continuous functions were obtained. In addition, relationships between faintly s- Continuous and faintly S-continuous function and other forms of FC function were investigated. Also, it is shown that every faintly S-continuous is weakly S-continuous. The Convers is shown to be satisfied only if the co-domain of the function is almost regular.
. Suppose that is the Cayley graph whose vertices are all elements of and two vertices and are adjacent if and only if . In this paper,we introduce the generalized Cayley graph denoted by which is a graph with a vertex set consisting of all column matrices in which all components are in and two vertices and are adjacent if and only if , where is a column matrix that each entry is the inverse of the similar entry of and is matrix with all entries in , is the transpose of and and m . We aim to provide some basic properties of the new graph and determine the structure of when is a complete graph for every , and n, m .