In this study, simple, low cost, precise and speed spectrophotometric methods development for evaluation of sulfacetamide sodium are described. The primary approach contains conversion of sulfacetamide sodium to diazonium salt followed by a reaction with p-cresol as a reagent in the alkaline media. The colored product has an orange colour with absorbance at λmax 450 nm. At the concentration range of (5.0-100 µg.mL-1), the Beer̆ s Low is obeyed with correlation coefficient (R2= 0.9996), limit of detection as 0.2142 µg.mL-1, limit of quantification as 0.707 µg.mL-1 and molar absorptivity as 1488.249 L.mol-1.cm-1. The other approach, cloud point extraction was utilized to an estimation of a trace amount of the colored product in the previous procedure followed by a measuring process with a UV-Vis spectrophotometer. The linearity of the calibration graph was above the range of (1.0-60 µg.mL-1), the correlation coefficient (R2= 0.9991) and molar absorptivity was 7417.622 L.mol-1.cm-1. The detection limit(LOD) and quantification limit(LOQ) were based to be 0.070 and 0.231 µg.mL-1 , respectively. This approach was successfully employed for sulfacetamide sodium detection within the pure and pharmaceutical formulation.
KE Sharquie, AA Noaimi, HA Al-Mudaris, Journal of Drugs in Dermatology: JDD, 2013 - Cited by 22
Linear programming currently occupies a prominent position in various fields and has wide applications, as its importance lies in being a means of studying the behavior of a large number of systems as well. It is also the simplest and easiest type of models that can be created to address industrial, commercial, military and other dilemmas. Through which to obtain the optimal quantitative value. In this research, we dealt with the post optimality solution, or what is known as sensitivity analysis, using the principle of shadow prices. The scientific solution to any problem is not a complete solution once the optimal solution is reached. Any change in the values of the model constants or what is known as the inputs of the model that will chan
... Show MoreThis study aims to identify changes in vegetation cover and its impact on the climate of Mosul City. The analytical method of the study relies on changes in Land Use/Land Cover (LULC), Normalized Difference Vegetation Index (NDVI), and Land Surface Temperature (LST); GIS technology was used to measure these statistics. Landsat (5,8) imagery was used to detect the change in vegetation cover change and land surface temperature during the study period from 2010 to 2022, where the unsupervised classification technique was used to determine LU variations. The results revealed significant changes among the LU classes during the study period, primarily due to human activities. The most prominent change in LU was the urban expansion of agricultural
... Show MoreVegetation monitoring is considered an important application in remote sensing task due to variation of vegetation types and their distribution. The vegetation concentration around the Earth is increase in 5% in 2000 according to NASA monitoring. This increase is due to the Indian vegetable programs. In this research, the vegetation monitoring in Baghdad city was done using Normalized Difference Vegetation Index (NDVI) for temporal Landsat satellite images (Landsat 5 TM& Landsat 8 OIL). These images had been used and utilize in different times during the period from 2000, 2010, 2015 & 2017. The outcomes of the study demonstrate that a change in the vegetation Cover (VC) in Baghdad city. (NDVI) generally shows a
... Show MoreThis paper is concerned with introducing and studying the o-space by using out degree system (resp. i-space by using in degree system) which are the core concept in this paper. In addition, the m-lower approximations, the m-upper approximations and ospace and i-space. Furthermore, we introduce near supraopen (near supraclosed) d. g.'s. Finally, the supra-lower approximation, supraupper approximation, supra-accuracy are defined and some of its properties are investigated.
Machine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims
... Show More