Ghrelin and leptin are hunger hormones related to type 2 diabetes mellitus (T2DM), and the pathogenesis of T2DM is the abnormality in insulin secretion and insulin resistance (IR). The aim of this study is to evaluate ghrelin and leptin concentrations in blood and to specify the relationship of these hormones as dependent variables with some biochemical and clinical measurements in T2DM patients. In this study, forty one T2DM and forty three non-diabetes mellitus (non-DM) subjects, aged between 40-60 years and with normal weight, were enrolled. Fasting serum ghrelin and leptin were estimated by enzyme-linked immunosorbent assay (ELISA). In our results ghrelin was significantly increased, and leptin was significantly decreased, in T2DM patients compared with non-DM subjects. Ghrelin was positively correlated with the fasting blood glucose (FBG) and IR, but inversely related to the insulin sensitivity (IS). Leptin was negatively correlated with mean arterial pressure (MAP), FBG, glycated hemoglobin (HbA1c), IR, low-density lipoprotein cholesterol, nitric oxide (NO), and alanine aminotransferase (ALT), as well as showed a linear correlation with IS and a strong dependence on sex. The area under the curve (AUC) value shows ghrelin and leptin as biomarkers for T2DM. In conclusion ghrelin and leptin hormones have predictive ability to predict T2DM, as they are significantly associated with IR, IS, free radicals, and lipid profile.
The aim of the work is synthesis and characterization of bidentate ligand [3-(3-acetylphenylamino)-5,5-dimethylcyclohex-3-enone][HL], from the reaction of dimedone with 3-amino acetophenone to produce the ligand [HL], the reaction was carried out in dry benzene as a solvent under reflux. The prepared ligand [HL] was characterized by FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR spectra, Mass spectra, (C.H.N) and melting point. The mixed ligand complexes were prepared from ligand [HL] was used as a primary ligand while 8-hydroxy quinoline [HQ] was used as a secondary ligand with metal ion M(Π).Where M(Π) = (Mn ,Co ,Ni ,Cu ,Zn ,Cd and Pd) at reflux ,using ethanol as a solvent, KOH as a base. Complexes of the composition [M(L)(Q)] with (1
... Show MoreBP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.
This research was aimed to study the exposure of Razzazah Lake to major hydrological changes in recent years as a result of natural climatic changes and drought, high evaporation in lake due to stop discharge from Habbaniyah Lake by Al- majera channel. During 2019, we collected surface water samples at three locations, and three samples from groundwater, in addition one samples from each location Imam Ali Drop and Sewage water of Karbala. The Results show that the heavy isotopes in lake and groundwater well are enriched during the warm period, and depleted during the cold period. Chemically, The dominant cations and anions in Al-Razzaza lake water are mainly of in Order Ca > Na > Mg and Cl>SO4 and the water
... Show MoreSn(II) complex of the type, [Sn(SMZ)2]Cl2 was synthesized by the interaction of Sulfamethoxazole ligand and Tin Chloride, the complex was confirmed on the basis of results of elemental analyses, FT-IR, UV-Vis, molar conductance (Ëm). The elemental analysis data, suggests the stoichiometry to be 1:2 (metal: ligand) and determination of the formula of a coordination a complex formed between the Sn(II) ion and the SMZ using Job’s method of continuous variations. The study of (Ëm), indicated the electrolytic nature type 1:2. The [Sn(SMZ)2]Cl2 was screened for antibacterial activity against Gram-ve (Escherichia coli and Gram+ve (Staphylococcus aureus) and (Candida albicans) antifungal. The IR spectral data suggested that the coordination sit
... Show MoreGraphene oxide GO was functionalized with 4-amino, 3-substituted 1H, 1, 2, 4 Triazole 5(4H) thion (ASTT) to obtain GOT. GOT characterized by FT-IR, XRD.via modification of the working electrode of the SPCE with the prepared nanomaterial (GOT) the effect of scan rate and pH on the determination of Amoxilline (AMOX) was studied using cyclic voltammetry. AMOX show various responses at pH ranging from 2 to 7 and also was observed sharp increase in the oxidation peaks in the pH 3. The formal potential (midpoint) for AMOX was highly pH-dependent. From the effect of scan rate, surface coverage concentration Γ of electroactive species the values of the electron transfer coefficient and the electron transfer constant rate ket was obtained as 5.39×
... Show MoreBackground: Metabolic syndrome (Mets) is partially heritable. High mobility group AT-hook1 (HMGA1), an architectural transcription factor, affects the homeostasis of glucose. The marked inter-individual differences between T
... Show MoreThe aim of this work is to evaluate some mechanical and physical
properties (i.e. the impact strength, hardness, flexural strength,
thermal conductivity and diffusion coefficient) of
(epoxy/polyurethane) blend reinforced with nano silica powder (2%
wt.). Hand lay-up technique was used to manufacture the composite
and a magnetic stirrer for blending the components. Results showed
that water had affected the bending flexural strength and hardness,
while impact strength increased and thermal conductivity decreased.
In addition to the above mentioned tests, the diffusion coefficient
was calculated using Fick’s 2nd law.
Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show More