This paper is concerned with introducing an explicit expression for orthogonal Boubaker polynomial functions with some important properties. Taking advantage of the interesting properties of Boubaker polynomials, the definition of Boubaker wavelets on interval [0,1) is achieved. These basic functions are orthonormal and have compact support. Wavelets have many advantages and applications in the theoretical and applied fields, and they are applied with the orthogonal polynomials to propose a new method for treating several problems in sciences, and engineering that is wavelet method, which is computationally more attractive in the various fields. A novel property of Boubaker wavelet function derivative in terms of Boubaker wavelet themselves is also obtained. This Boubaker wavelet is utilized along with a collocation method to obtain an approximate numerical solution of singular linear type of Lane-Emden equations. Lane-Emden equations describe several important phenomena in mathematical science and astrophysics such as thermal explosions and stellar structure. It is one of the cases of singular initial value problem in the form of second order nonlinear ordinary differential equation. The suggested method converts Lane-Emden equation into a system of linear differential equations, which can be performed easily on computer. Consequently, the numerical solution concurs with the exact solution even with a small number of Boubaker wavelets used in estimation. An estimation of error bound for the present method is also proved in this work. Three examples of Lane-Emden type equations are included to demonstrate the applicability of the proposed method. The exact known solutions against the obtained approximate results are illustrated in figures for comparison
Cox regression model have been used to estimate proportion hazard model for patients with hepatitis disease recorded in Gastrointestinal and Hepatic diseases Hospital in Iraq for (2002 -2005). Data consists of (age, gender, survival time terminal stat). A Kaplan-Meier method has been applied to estimate survival function and hazerd function.
This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.
The inhibition of mild steel corrosion in 1.0M HCl by 1-propanol and the synergistic effect of potassium iodide (KI) was investigated using weight loss and polarization techniques in the temperature range (30 ‒ 50) ̊ C. A matrix of Doelhert to three factors was used as the experimental design, adopting weight loss results as it permits the use of the response surface methodology which exploited in determination of the synergistic effect as inhibition on the mild steel. The results were confirmed using electrochemical polarization measurements. Experimental results showed that the inhibition efficiency (IE%) increases with increase in concentration of inhibitor and with increasing of temperature. The addition iodide ions t
... Show MoreThe Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the ana
... Show MoreThis paper is concerned with the solution of the nanoscale structures consisting of the with an effective mass envelope function theory, the electronic states of the quantum ring are studied. In calculations, the effects due to the different effective masses of electrons in and out the rings are included. The energy levels of the electron are calculated in the different shapes of rings, i.e., that the inner radius of rings sensitively change the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. The structures of quantum rings are studied by the one electronic band Hamiltonian effective mass approximati
... Show MoreThe influence of adding metal foam fins on the heat transfer characteristics of an air to water double pipe heat exchanger is numerically investigated. The hot fluid is water which flows in the inner cylinder whereas the cold fluid is air which circulates in the annular gap in parallel flow with water. Ten fins of metal foam (Porosity = 0.93), are added in the gap between the two cylinder, and distributed periodically with the axial distance. Finite volume method is used to solve the governing equations in porous and non-porous regions. The numerical investigations cover three values for Reynolds number (1000 ,1500, 2000), and Darcy number (1 x10-1, 1 x10-2, 1x10-3). The comparison betwee
... Show MoreAbstract
In this research provide theoretical aspects of one of the most important statistical distributions which it is Lomax, which has many applications in several areas, set of estimation methods was used(MLE,LSE,GWPM) and compare with (RRE) estimation method ,in order to find out best estimation method set of simulation experiment (36) with many replications in order to get mean square error and used it to make compare , simulation experiment contrast with (estimation method, sample size ,value of location and shape parameter) results show that estimation method effected by simulation experiment factors and ability of using other estimation methods such as(Shrinkage, jackknif
... Show MoreThis paper concerns with deriving and estimating the reliability of the multicomponent system in stress-strength model R(s,k), when the stress and strength are identical independent distribution (iid), follows two parameters Exponentiated Pareto Distribution(EPD) with the unknown shape and known scale parameters. Shrinkage estimation method including Maximum likelihood estimator (MLE), has been considered. Comparisons among the proposed estimators were made depending on simulation based on mean squared error (MSE) criteria.
The usage of remote sensing techniques in managing and monitoring the environmental areas is increasing due to the improvement of the sensors used in the observation satellites around the earth. Resolution merge process is used to combine high resolution one band image with another one that have low resolution multi bands image to produce one image that is high in both spatial and spectral resolution. In this work different merging methods were tested to evaluate their enhancement capabilities to extract different environmental areas; Principle component analysis (PCA), Brovey, modified (Intensity, Hue ,Saturation) method and High Pass Filter methods were tested and subjected to visual and statistical comparison for evaluation. Both visu
... Show MoreThis paper presents a statistical study for a suitable distribution of rainfall in the provinces of Iraq
Using two types of distributions for the period (2005-2015). The researcher suggested log normal distribution, Mixed exponential distribution of each rovince were tested with the distributions to determine the optimal distribution of rainfall in Iraq. The distribution will be selected on the basis of minimum standards produced some goodness of fit tests, which are to determine
Akaike (CAIC), Bayesian Akaike (BIC), Akaike (AIC). It has been applied to distributions to find the right distribution of the data of rainfall in the provinces of Iraq was used (maximu
... Show More