Eye Detection is used in many applications like pattern recognition, biometric, surveillance system and many other systems. In this paper, a new method is presented to detect and extract the overall shape of one eye from image depending on two principles Helmholtz & Gestalt. According to the principle of perception by Helmholz, any observed geometric shape is perceptually "meaningful" if its repetition number is very small in image with random distribution. To achieve this goal, Gestalt Principle states that humans see things either through grouping its similar elements or recognize patterns. In general, according to Gestalt Principle, humans see things through general description of these things. This paper utilizes these two principles to recognize and extract eye part from image. Java programming language and OpenCV library for image processing are used for this purpose. Good results are obtained from this proposed method, where 88.89% was obtained as a detection rate taking into account that the average execution time is about 0.23 in seconds.
The objective of the present study is to verify the actual carious lesion depth by laser
fluorescence technique using 650 nm CW diode laser in comparison with the histopathological
investigation. Five permanent molar teeth were extracted from adult individuals for different reasons
(tooth impaction, periodontal diseases, and pulp infections); their ages were ranging from 20-25 years
old. Different carious teeth with varying clinical stages of caries progression were examined. An
experimental laser fluorescence set-up was built to perform the work regarding in vitro detection and
quantification of occlusal dental caries and the determination of its actual clinical carious lesion depth by
650 nm CW diode laser (excitat
The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreA novel method for Network Intrusion Detection System (NIDS) has been proposed, based on the concept of how DNA sequence detects disease as both domains have similar conceptual method of detection. Three important steps have been proposed to apply DNA sequence for NIDS: convert the network traffic data into a form of DNA sequence using Cryptography encoding method; discover patterns of Short Tandem Repeats (STR) sequence for each network traffic attack using Teiresias algorithm; and conduct classification process depends upon STR sequence based on Horspool algorithm. 10% KDD Cup 1999 data set is used for training phase. Correct KDD Cup 1999 data set is used for testing phase to evaluate the proposed method. The current experiment results sh
... Show MoreThis research deals with the qualitative and quantitative interpretation of Bouguer gravity anomaly data for a region located to the SW of Qa’im City within Anbar province by using 2D- mapping methods. The gravity residual field obtained graphically by subtracting the Regional Gravity values from the values of the total Bouguer anomaly. The residual gravity field processed in order to reduce noise by applying the gradient operator and 1st directional derivatives filtering. This was helpful in assigning the locations of sudden variation in Gravity values. Such variations may be produced by subsurface faults, fractures, cavities or subsurface facies lateral variations limits. A major fault was predicted to extend with the direction NE-
... Show MoreA nonlinear filter for smoothing color and gray images
corrupted by Gaussian noise is presented in this paper. The proposed
filter designed to reduce the noise in the R,G, and B bands of the
color images and preserving the edges. This filter applied in order to
prepare images for further processing such as edge detection and
image segmentation.
The results of computer simulations show that the proposed
filter gave satisfactory results when compared with the results of
conventional filters such as Gaussian low pass filter and median filter
by using Cross Correlation Coefficient (ccc) criteria.
In current article an easy and selective method is proposed for spectrophotometric estimation of metoclopramide (MCP) in pharmaceutical preparations using cloud point extraction (CPE) procedure. The method involved reaction between MCP with 1-Naphthol in alkali conditions using Triton X-114 to form a stable dark purple dye. The Beer’s law limit in the range 0.34-9 μg mL-1 of MCP with r =0.9959 (n=3) after optimization. The relative standard deviation (RSD) and percentage recoveries were 0.89 %, and (96.99–104.11%) respectively. As well, using surfactant cloud point extraction as a method to extract MCP was reinforced the extinction coefficient(ε) to 1.7333×105L/mol.cm in surfactant-rich phase. The small volume of organi
... Show MoreBioindicators have an important role in assessing the quality of water bodies. Aquatic oligocheates, was used as a bioindicator to assess the sediment quality of Al-Hindyia and AL-Abbasyia river (branches of Euphrates River in Iraq). Two sites in each river have been chosen for this purpose, site S1 was located at Al-Hindyia River and S2 at Al-Abbasyia River. Some kinds of biological indices were used in this study, comprising the percentage of oligochaetes in benthic invertebrates, ranged from 20.3-60.16%. While the percentage of Tubificidae within benthic invertebrates was close 43.3-43.9%.Index of pollution D ranged from 0.13-0.21. The maximum percentage of aquatic oligochaetes to insects larvae of family
... Show MoreThe present study was conducted with a view to determine whether focal laser therapy result in visual recovery and regression of macular edema in patients with non proliferative diabetic retinopathy and maculopathy ,and whether combined focal and scatter laser therapy in patients with proliferative diabetic retinopathy and maculopathy results in visual recovery ,regression of macular edema and regression of the risk factors. In the present work, a frequency doubled Nd: YAG laser was used for the treatment of diabetic retinopathy. The study evaluates 41 eyes of 33 diabetic patients both with Insulin Dependent Diabetes Mellitus IDDM, (n=16) and Non Insulin Dependent Diabetes Mellitus NIDDM, (n=17) with diabetic retinopathy divided into two
... Show More