Radiation treatment has long been the conventional approach for treating nasopharyngeal cancer (NPC) tumors due to its anatomic features, biological characteristics, and radiosensitivity. The most common treatment for nasopharyngeal carcinoma is radiotherapy. This study aimed to assess the better quality of radiotherapy treatment techniques using intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). The VMAT and IMRT are comparative techniques. Forty patients with nasopharyngeal carcinoma and forwarded for radiotherapy were treated with both advanced techniques, IMRT and VMAT, using eclipse software from Varian. The x-ray energy was set at 6 MV. The total prescribed dose was 70 Gy. The results show that the
... Show MoreForm of investment in infrastructure important factor to drive economic growth in any country, with the dwindling ability of governments to provide the necessary funds for such investments, emerged as a rising trend for private sector involvement in public projects and infrastructure, and one of these trends is the build-operate-transfer system (BOT), which commonly used in various developed and developing countries as one of the tools used in the implementation of these investments, as the private sector under this system design, finance, build and operate the project, and are re-administration of the state after a certain period under a contractual agreement between the parties of the contract. As this system provides majo
... Show MoreThe primary objective of the current paper is to suggest and implement effective computational methods (DECMs) to calculate analytic and approximate solutions to the nonlocal one-dimensional parabolic equation which is utilized to model specific real-world applications. The powerful and elegant methods that are used orthogonal basis functions to describe the solution as a double power series have been developed, namely the Bernstein, Legendre, Chebyshev, Hermite, and Bernoulli polynomials. Hence, a specified partial differential equation is reduced to a system of linear algebraic equations that can be solved by using Mathematica®12. The techniques of effective computational methods (DECMs) have been applied to solve some s
... Show MoreIn this paper, a theoretical study of the energy spectra and the heat capacity of one electron quantum dot with Gaussian Confinement in an external magnetic field are presented. Using the exact diagonalization technique, the Hamiltonian of the Gaussian Quantum Dot (GQD) including the electron spin is solved. All the elements in the energy matrix are found in closed form. The eigenenergies of the electron were displayed as a function of magnetic field, Gaussian confinement potential depth and quantum dot size. Explanations to the behavior of the quantum dot heat capacity curve, as a function of external applied magnetic field and temperature, are presented.