Optical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm, to detect malicious nodes in an OBS network. The proposed semi-supervised model was trained and validated with small amount data from a selected dataset. Experiments show that the model can classify the nodes into either behaving or not-behaving classes with 90% accuracy when trained with just 20% of data. When the nodes are classified into behaving, not-behaving and potentially not-behaving classes, the model shows 65.15% and 71.84% accuracy if trained with 20% and 30% of data respectively. Comparison with some notable works revealed that the proposed model outperforms them in many respects.
The widespread use of the Internet of things (IoT) in different aspects of an individual’s life like banking, wireless intelligent devices and smartphones has led to new security and performance challenges under restricted resources. The Elliptic Curve Digital Signature Algorithm (ECDSA) is the most suitable choice for the environments due to the smaller size of the encryption key and changeable security related parameters. However, major performance metrics such as area, power, latency and throughput are still customisable and based on the design requirements of the device.
The present paper puts forward an enhancement for the throughput performance metric by p
... Show MoreThe research aimed to identify and build two specialized scales for cognitive load and mental stress and to identify the level of each of them among 110-meter steeplechase runners among youth, and to prepare a psychological counseling approach to reduce the level of cognitive load and mental stress among 110-meter steeplechase runners among youth, so that the two research hypotheses are that there are differences. There are statistically significant differences between the results of the pre- and post-tests of the experimental group in measuring cognitive load. There are statistically significant differences between the results of the pre- and post-tests of the experimental group in measuring mental stress. The experimental method w
... Show MoreThe current research creates an overall relative analysis concerning the estimation of Meixner process parameters via the wavelet packet transform. Of noteworthy presentation relevance, it compares the moment method and the wavelet packet estimator for the four parameters of the Meixner process. In this paper, the research focuses on finding the best threshold value using the square root log and modified square root log methods with the wavelet packets in the presence of noise to enhance the efficiency and effectiveness of the denoising process for the financial asset market signal. In this regard, a simulation study compares the performance of moment estimation and wavelet packets for different sample sizes. The results show that wavelet p
... Show MoreOffline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show MoreThe Current Research Seeks To Identify The Possibility Of Unifying The Private Drinking Stations In The Session In A Single Station In Order To Prevent Pollution. In Order To Achieve The Goal Of The Current Research, The Researcher Followed The Descriptive Survey Approach. The Researcher Identified The Research Community As Working In Institutions Related To Drinking Water Filtering In The Governorate Of Baghdad, And In Order To Collect Data And Information Necessary To Answer The Study's Question (Is It Possible To Supply Private Drinking Stations With One Station?) Researcher Designed A Questionnaire Consisting Of (10) Paragraphs Measuring Aspects Of This Topic, And Applied It To A Sample Of Employees And Workers Amounted To (200) People,
... Show MoreLeaching scheduling techniques are one of the suggested solutions for water scarcity problems .The aim of the study is to show the possibility of using leaching scheduling, when applying the irrigation scheduling program for a certain irrigation project, which was prepare by Water Resources Engineering –University of Baghdad with some modifications to generalized it and it make applicable to various climatic zone and different soil types.
The objectives of this research is to build a system that concerns the prediction of the leaching scheduling (depth and date of leaching water), illustrating the main problems (soil salinity, save the amount of leaching requirement, and to maintain crops growth).The other objective is to compare be
Vision loss happens due to diabetic retinopathy (DR) in severe stages. Thus, an automatic detection method applied to diagnose DR in an earlier phase may help medical doctors to make better decisions. DR is considered one of the main risks, leading to blindness. Computer-Aided Diagnosis systems play an essential role in detecting features in fundus images. Fundus images may include blood vessels, exudates, micro-aneurysm, hemorrhages, and neovascularization. In this paper, our model combines automatic detection for the diabetic retinopathy classification with localization methods depending on weakly-supervised learning. The model has four stages; in stage one, various preprocessing techniques are app
The Tigris River, a vital water resource for Iraq, faces significant challenges due to urbanization, agricultural runoff, industrial discharges, and climate change, leading to deteriorating water quality. Traditional methods for assessing irrigation water quality, such as laboratory testing and statistical modeling, are often insufficient for capturing dynamic and nonlinear relationships between parameters. This study proposes a novel application of the Gravitational Search Algorithm (GSA) to estimate the Irrigation Water Quality Index (IWQI) along the Tigris River. Using data from multiple stations, the study evaluates spatial variability in water quality, focusing on key paramete
Background: The aim of this study is to evaluate the color change ∆E of the dental enamel following treatment with 2 kinds of protector (icon infiltrant, clinpro varnish) before fixed orthodontic treatment to avoid the possible white spot lesions. Materials and Methods: Fifty four subjects treated with fixed appliances were divided into 3 groups: the 1st group was control, while the 2nd and 3rd groups were treated with icon infiltrant and clinpro varnish before bonding procedure, respectively. Color parameters (L,a,b) were recorded for the middle and gingival thirds before and after bonding procedure to get the ∆E of each group. Results: One-way ANOVA test showed a non-significant difference in ∆E between the 3 groups a
... Show More