Preferred Language
Articles
/
bsj-4153
New Approach for Solving Three Dimensional Space Partial Differential Equation
...Show More Authors

This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.

       Finally, all algorithms in this paper are implemented in MATLAB version 7.12.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Effective Computational Methods for Solving the Jeffery-Hamel Flow Problem
...Show More Authors

In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
An Evolutionary Algorithm for Solving Academic Courses Timetable Scheduling Problem
...Show More Authors

Scheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Application of Iterative Method for Solving Higher Order Integro-Differential Equations
...Show More Authors

The main aim of this paper is to apply a new technique suggested by Temimi and Ansari namely (TAM) for solving higher order Integro-Differential Equations. These equations are commonly hard to handle analytically so it is request numerical methods to get an efficient approximate solution. Series solutions of the problem under consideration are presented by means of the Iterative Method (IM). The numerical results show that the method is effective, accurate and easy to implement rapidly convergent series to the exact solution with minimum amount of computation. The MATLAB is used as a software for the calculations.           

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solution for Classical Optimal Control Problem Governing by Hyperbolic Partial Differential Equation via Galerkin Finite Element-Implicit method with Gradient Projection Method
...Show More Authors

     This paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given.  The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Application the generalized estimating equation Method (GEE) to estimate of conditional logistic regression model for repeated measurements
...Show More Authors

Conditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 28 2023
Journal Name
Baghdad Science Journal
Newton-Kantorovich Method for Solving One of the Non-Linear Sturm-Liouville Problems
...Show More Authors

Due to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Sep 30 2014
Journal Name
Iosr Journal Of Mathematics
Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations
...Show More Authors

In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.

View Publication
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Computational And Theoretical Nanoscience
Three-Dimensional Seismic Response Analysis for a Rockfill Dam
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Gazi University Journal Of Science
Reliable Iterative Methods for Solving the Falkner-Skan Equation
...Show More Authors

View Publication
Crossref (7)
Crossref
Publication Date
Wed Apr 29 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Alternating Directions Implicit Method for Solving Homogeneous Heat Diffusion Equation
...Show More Authors

     An Alternating Directions Implicit method is presented to solve the homogeneous heat diffusion equation when the governing equation is a bi-harmonic equation (X) based on Alternative Direction Implicit (ADI). Numerical results are compared with other results obtained by other numerical (explicit and implicit) methods. We apply these methods it two examples (X): the first one, we apply explicit when the temperature .

View Publication Preview PDF
Crossref