Preferred Language
Articles
/
bsj-4153
New Approach for Solving Three Dimensional Space Partial Differential Equation
...Show More Authors

This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.

       Finally, all algorithms in this paper are implemented in MATLAB version 7.12.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method
...Show More Authors

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

View Publication Preview PDF
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Baghdad Science Journal
Existence of Fixed Points for Expansive Mappings in Complete Strong Altering JS-metric space
...Show More Authors

The paper aims at initiating and exploring the concept of extended metric known as the Strong Altering JS-metric, a stronger version of the Altering JS-metric. The interrelation of Strong Altering JS-metric with the b-metric and dislocated metric has been analyzed and some examples have been provided. Certain theorems on fixed points for expansive self-mappings in the setting of complete Strong Altering JS-metric space have also been discussed.

View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Fixed Point Theorems in General Metric Space with an Application
...Show More Authors

   This paper aims to prove an existence theorem for Voltera-type equation in a generalized G- metric space, called the -metric space, where the fixed-point theorem in - metric space is discussed and its application.  First, a new contraction of Hardy-Rogess type is presented and also then fixed point theorem is established for these contractions in the setup of -metric spaces. As application, an existence result for Voltera integral equation is obtained.  

View Publication Preview PDF
Scopus (13)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Numerical Solution of Fractional Volterra-Fredholm Integro-Differential Equation Using Lagrange Polynomials
...Show More Authors

In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Dec 07 2008
Journal Name
Baghdad Science Journal
Three Dimensional MHD Simulationof Comet Hale-Bopp Tail
...Show More Authors

The interaction between comet Hale-Bopp tail with the solar wind is investigated in the present paper using magneto-hydrodynamic (MHD) numerical simulation, which accounts for the presence of the interplanetary magnetic field (IMF). The simulation is based on three-dimensional Lax-Wendroff explicit scheme, providing second-order accuracy in space and time. The ions produced from the nucleus of the comet will add considerable effects on the microstructure of the solar wind, thus severely altering its physical properties. The present simulation focuses on careful analysis of these properties by means of simulating the behavior of the comet Hale-Bopp’s tail at 1 AU from the sun. These properties include the changes of the plasma density,

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Delay differential equation of the 2nd order and it's an oscillation yardstick
...Show More Authors

This study focuses on studying an oscillation of a second-order delay differential equation. Start work, the equation is introduced here with adequate provisions. All the previous is braced by theorems and examplesthat interpret the applicability and the firmness of the acquired provisions

View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Sep 23 2020
Journal Name
Artificial Intelligence Research
Hybrid approaches to feature subset selection for data classification in high-dimensional feature space
...Show More Authors

This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe

... Show More
View Publication
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
A general solution of some linear partial differential equations via two integral transforms
...Show More Authors

In this paper, a new analytical method is introduced to find the general solution of linear partial differential equations. In this method, each Laplace transform (LT) and Sumudu transform (ST) is used independently along with canonical coordinates. The strength of this method is that it is easy to implement and does not require initial conditions.

View Publication
Clarivate
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Local and Global Uniqueness Theorems of the N-th Order Partial Differential Equations
...Show More Authors

In this paper, we consider inequalities in which the function is an element of n-th partially order space. Local and Global uniqueness theorem of solutions of the n-the order Partial differential equation Obtained which are applications of Gronwall's inequalities.

View Publication Preview PDF
Crossref
Publication Date
Wed Jun 10 2009
Journal Name
Iraqi Journal Of Laser
Simulation of passively Q-switched rate equation using saturable crystal Dy +2: CaF2 with ruby laser
...Show More Authors

The simulation of passively Q-switching is four non – linear first order differential equations. The optimization of passively Q-switching simulation was carried out using the constrained Rosenbrock technique. The maximization option in this technique was utilized to the fourth equation as an objective function; the parameters, γa, γc and β as were dealt with as decision variables. A FORTRAN program was written to determine the optimum values of the decision variables through the simulation of the four coupled equations, for ruby laser Q–switched by Dy +2: CaF2.For different Dy +2:CaF2 molecules number, the values of decision variables was predicted using our written program. The relaxation time of Dy +2: CaF2, used with ruby was

... Show More
View Publication Preview PDF