Preferred Language
Articles
/
bsj-3980
On Blow-up Solutions of A Parabolic System Coupled in Both Equations and Boundary Conditions

This paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 27 2020
Journal Name
Iraqi Journal Of Science
Blow-up Rate Estimates and Blow-up Set for a System of Two Heat Equations with Coupled Nonlinear Neumann Boundary Conditions

This paper deals with the blow-up properties of positive solutions to a parabolic system of two heat equations, defined on a ball in  associated with coupled Neumann boundary conditions of exponential type. The upper bounds of blow-up rate estimates are derived. Moreover, it is proved that the blow-up in this problem can only occur on the boundary.

Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Blow-up Properties of a Coupled System of Reaction-Diffusion Equations

    This paper is concerned with a Coupled Reaction-diffusion system defined in a ball with homogeneous Dirichlet boundary conditions. Firstly, we studied the blow-up set showing that, under some conditions, the blow-up in this problem occurs only at a single point. Secondly, under some restricted assumptions on the reaction terms, we established the upper (lower) blow-up rate estimates. Finally, we considered the Ignition system in general dimensional space as an application to our results.

Scopus (6)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
ON Numerical Blow-Up Solutions of Semilinear Heat Equations

This paper is concerned with the numerical blow-up solutions of semi-linear heat equations, where the nonlinear terms are of power type functions, with zero Dirichlet boundary conditions. We use explicit linear and implicit Euler finite difference schemes with a special time-steps formula to compute the blow-up solutions, and to estimate the blow-up times for three numerical experiments. Moreover, we calculate the error bounds and the numerical order of convergence arise from using these methods. Finally, we carry out the numerical simulations to the discrete graphs obtained from using these methods to support the numerical results and to confirm some known blow-up properties for the studied problems.

Scopus (14)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Deriving The Upper Blow-up Rate Estimate for a Parabolic Problem

In this paper, the blow-up solutions for a parabolic problem, defined in a bounded domain, are studied. Namely, we consider the upper blow-up rate estimate for heat equation with a nonlinear Neumann boundary condition defined on a ball in Rn.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
On the Growth of Solutions of Second Order Linear Complex Differential Equations whose Coefficients Satisfy Certain Conditions

In this paper, we study the growth of solutions of the second order linear complex differential equations  insuring that any nontrivial solutions are of infinite order. It is assumed that the coefficients satisfy the extremal condition for Yang’s inequality and the extremal condition for Denjoy’s conjecture. The other condition is that one of the coefficients itself is a solution of the differential equation .

Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Numerical Blow-up Time of a One-Dimensional Semilinear Parabolic Equation with a Gradient Term

  This paper deals with numerical approximations of a one-dimensional semilinear parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem of the considered problem and discuss its convergence and blow-up properties. Secondly, we propose both Euler explicit and implicit finite differences methods with a non-fixed time-stepping procedure to estimate the numerical blow-up time of the considered problem. Finally, two numerical experiments are given to illustrate the efficiency, accuracy, and numerical order of convergence of the proposed schemes.

Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
The Continuous Classical Boundary Optimal Control of Couple Nonlinear Hyperbolic Boundary Value Problem with Equality and Inequality Constraints

The paper is concerned with the state and proof of the existence theorem of a unique solution (state vector) of couple nonlinear hyperbolic equations (CNLHEQS) via the Galerkin method (GM) with the Aubin theorem. When the continuous classical boundary control vector (CCBCV) is known, the theorem of existence a CCBOCV with equality and inequality state vector constraints (EIESVC) is stated and proved, the existence theorem of a unique solution of the adjoint couple equations (ADCEQS) associated with the state equations is studied. The Frcéhet derivative derivation of the "Hamiltonian" is obtained. Finally the necessary theorem (necessary conditions "NCs") and the sufficient theorem (sufficient conditions" SCs") for optimality of the stat

... Show More
Scopus (9)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
The Classical Continuous Optimal Control for Quaternary Nonlinear Parabolic Boundary Value Problems

In this paper, our purpose is to study the classical continuous optimal control (CCOC)  for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.

Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Convergence Analysis for the Homotopy Perturbation Method for a Linear System of Mixed Volterra-Fredholm Integral Equations

           In this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.

Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
The Necessary and Sufficient Optimality Conditions for a System of FOCPs with Caputo–Katugampola Derivatives

The necessary optimality conditions with Lagrange multipliers  are studied and derived for a new class that includes the system of CaputoKatugampola fractional derivatives to the optimal control problems with considering the end time free. The formula for the integral by parts has been proven for the left CaputoKatugampola fractional derivative that contributes to the finding and deriving the necessary optimality conditions. Also, three special cases are obtained, including the study of the necessary optimality conditions when both the final time  and the final state  are fixed. According to convexity assumptions prove that necessary optimality conditions are sufficient optimality conditions.

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF