This paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.
In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.
The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.
The present paper studies the generalized Φ- recurrent of Kenmotsu type manifolds. This is done to determine the components of the covariant derivative of the Riemannian curvature tensor. Moreover, the conditions which make Kenmotsu type manifolds to be locally symmetric or generalized Φ- recurrent have been established. It is also concluded that the locally symmetric of Kenmotsu type manifolds are generalized recurrent under suitable condition and vice versa. Furthermore, the study establishes the relationship between the Einstein manifolds and locally symmetric of Kenmotsu type manifolds.
In this paper, some necessary and sufficient conditions are obtained to ensure the oscillatory of all solutions of the first order impulsive neutral differential equations. Also, some results in the references have been improved and generalized. New lemmas are established to demonstrate the oscillation property. Special impulsive conditions associated with neutral differential equation are submitted. Some examples are given to illustrate the obtained results.
In this paper, the continuous classical boundary optimal control problem (CCBOCP) for triple linear partial differential equations of parabolic type (TLPDEPAR) with initial and boundary conditions (ICs & BCs) is studied. The Galerkin method (GM) is used to prove the existence and uniqueness theorem of the state vector solution (SVS) for given continuous classical boundary control vector (CCBCV). The proof of the existence theorem of a continuous classical boundary optimal control vector (CCBOCV) associated with the TLPDEPAR is proved. The derivation of the Fréchet derivative (FrD) for the cost function (CoF) is obtained. At the end, the theorem of the necessary conditions for optimality (NCsThOP) of this problem is stated and prov
... Show MoreThis paper is dealing with an experimental study to show the influence of the geometric characteristics of the vortex generators VG son the thickness of the boundary layer (∂) and drag coefficients (CD) of the flat plate. Vortex generators work effectively on medium and high angles of attack, since they are "hidden" under the boundary layer and practically ineffective at low angles.
The height of VGs relative to the thickness of the boundary layer enables us to study the efficacy of VGs in delaying boundary layer separation. The distance between two VGs also has an effect on the boundary layer if we take into
... Show MoreIn this study, an efficient novel technique is presented to obtain a more accurate analytical solution to nonlinear pantograph differential equations. This technique combines the Adomian decomposition method (ADM) with the homotopy analysis method concepts (HAM). The whole integral part of HAM is used instead of an integral part of ADM approach to get higher accurate results. The main advantage of this technique is that it gives a large and more extended convergent region of iterative approximate solutions for long time intervals that rapidly converge to the exact solution. Another advantage is capable of providing a continuous representation of the approximate solutions, which gives better information over whole time interv
... Show MoreAbstract:
The achievement of agricultural development provide food security and to form a basis for economic growth and comprehensive social, requires a number of actions to overcome the obstacles and problems facing the development of this economic sector, to make it able to achieve food security and operation of the workforce, and reduce dependence on the outside in the provision of food peripherals, and so it is only available through the highest degree of efficiency and economic mobilization of resources, so most of the developed and developing countries alike seek to achieve sustainable agricultural development tobacco meet the food requirements and good jobs for c
... Show MoreThe wastewater arising from pulp and paper mills is highly polluted and has to be treated before discharged into rivers. Coagulation-flocculation process using natural polymers has grown rapidly in wastewater treatment. In this work, the performance of alum and Polyaluminum Chloride (PACl) when used alone and when coupled with Fenugreek mucilage on the treatment of pulp and paper mill wastewater were studied. The experiments were carried out in jar tests with alum, PACl and Fenugreek mucilage dosages range of 50-2000 mg/L, rapid mixing at 200 rpm for 2 min, followed by slow mixing at 40 rpm for 15 min and settling time of 30 min. The effectiveness of Fenugreek mucilage was measured by the reduction of turbidity and Chemical Oxygen Demand
... Show MoreThe idea of the design of combination Between split – plot and split block means that an experiment conducted with a design
formed by combination Between split – plot and split block, and it presents a precise manner to analytic who aimed to make appropriate statistical analysis for the experiment because such design contains four random errors , it make a high precision rather than another designs. The plan and the theoretical analysis were presented with application to show its idia and the ability to use it in many fields especially in agricultural experiments field .