Solar cells thin films were prepared using polyvinyl alcohol (PVA) as a thin film, with extract of natural pigment from local flower. A concentration of 0.1g/ml of polyvinyl alcohol solution in water was prepared for four samples, with various concentrations of plant pigment (0, 15, 25 and 50) % added to each of the four solutions separately for preparing (PVA with low concentrated dye , PVA with medium concentrated dye and PVA with high concentrated dye ) thin films respectively . Ultraviolet absorption regions were obtained by computerized UV-Visible (CECIL 2700). Optical properties including (absorbance, reflectance, absorption coefficient, energy gap and dielectric constant) via UV- Vis were tested, too. Fourier transform infrared (FTIR) spectrophotometer was employed to test the samples. Thermal analysis of thin films, including melting point (Tm), onset degree, endset degree, and crystallinity% were tested by differential scanning calorimeter (DSC). Three dimensional morphologies of thin films were inspected by atomic force microscopy (ATM). Contact angle also was tested as an index to hydrophilicity. Results proved that the ultraviolet and FTIR absorption increase after adding the natural pigment to PVA thin film, as well as it increases with increasing concentration of natural pigment. DSC analysis revealed an increase of PVA melting point when adding 15% concentration and it decreases with a 50% concentration of pigment. AFM results show an increase in surface roughness, hence the surface bearing index of PVA thin films is inversely proportional to pigment concentration. Contact angle decreases from 46.5° for pure PVA thin film to 44. 8°, 42. 6° and 35.2° after adding (15, 25, and 50)% concentration of natural dye respectively. Optical properties were enhanced by adding the natural dye, hence energy gap decreased from 3 eV for pure PVA to 2.3 eV for the PVA with a high concentrate dye. Dielectric constant increased with increasing concentration of dye, which leads to high polarization of solar cell.
Optical properties and surface morphology of pure and doped Polystyrene films with different divalent metals of Zn, Cu and Sn and one concentration percentage have been studied. Measurements of UV-Vis spectrophotometer and AFM spectroscopy were determined. The absorbance, transmittance and reflectance spectrums were used to study different optical parameters such as absorption coefficient, refractive index, extinction coefficient and energy gap in the wavelengths rang 200-800nm. These parameters have increased in the presence of the metals. The change in the calculated values of energy gaps with doping metals content has been investigated in terms of PS matrix structural modification. The value of opt
... Show MoreEffect of copper doping and thermal annealing on the structural and optical properties of Zn0.5Cd0.5S thin films prepared by chemical spray pyrolysis have been studied. Depositions were done at 250°C on glass substrate. The structural properties and surface morphology of deposited films were studied using X-ray diffraction (XRD) and photomicroscope (PHM) techniques. XRD studies reveal that all films are crystalline tetragonal structure. The film crystallinity are increased with 1% Cu-doping concentration and also increased for the films annealed at 300°C than the other studied cases. The lattice constant 'a' and 'c' varies with doping concentrations from 5.487Å to 5.427Å and 10.871Å to 10.757Å respectively. The grain size attained
... Show MorePolycrystalline Cadmium Oxide (CdO) thin films were prepared
using pulsed laser deposition onto glass substrates at room
temperature with different thicknesses of (300, 350 and 400)nm,
these films were irradiated with cesium-137(Cs-137) radiation. The
thickness and irradiation effects on structural and optical properties
were studied. It is observed by XRD results that films are
polycrystalline before and after irradiation, with cubic structure and
show preferential growth along (111) and (200) directions. The
crystallite sizes increases with increasing of thickness, and decreases
with gamma radiation, which are found to be within the range
(23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for
Thin films of GexS1-x were fabricated by thermal evaporating under vacuum of 10-5Toor on glass substrate. The effect of increasing of germanium content (x) in sulfide films on the electrical properties like d.c conductivity (σDC), concentration of charge carriers (nH) and the activation energy (Ea) and Hall effect were investigated. The measurements show that (Ea) increases with the increasing of germanium content from 0.1to0.2 while it get to reduces with further addition, while charge carrier density (nH) is found to decrease and increase respectively with germanium content. The results were explained in terms of creating and eliminating of states in the band gap
At a temperature of 300 K, a prepared thin film of Ag doped with different ratios of CdO (0.1, 0.3, 0.5) % were observed using pulse laser deposition (PLD). The laser, an Nd:YAG in ?=1064 nm, used a pulse, constant energy of 600 mJ ,with a repetition rate of 6 Hz and 400 pulses. The effect of CdO on the structural and optical properties of these films was studied. The structural tests showed that these films are of a polycrystalline structure with a preferred orientation in the (002) direction for Ag. The grain size is positively correlated with the concentration of CdO. The optical properties of the Ag :CdO thin film we observed included transmittance, absorption coefficient, and the energy gap in the wavelength range of 300-1100
... Show MoreIn this research study the effect of irradiation by (CW) CO2 laser on some optical properties of (Cds) doping by Ni thin films of (1)µm thickness has been prepared by heat evaporation method. (X-Ray) diffraction technique showed the prepared films before and after irradiation are ploy crystalline hexagonal structure, optical properties were include recording of absorbance spectra for prepared films in the range of (400-1000) nm wave lengths, the absorption coefficient and the energy gap were calculated before and after irradiation, finally the irradiation affected (CdS) thin films by changing its color from the Transparent yellow to dark rough yellow and decrease the value absorption coefficient also increase the value of energy gap.
This survey investigates the thermal evaporation of Ag2Se on glass substrates at various thermal annealing temperatures (300, 348, 398, and 448) °K. To ascertain the effect of annealing temperature on the structural, surface morphology, and optical properties of Ag2Se films, investigations and research were carried out. The crystal structure of the film was described by Xray diffraction and other methods.The physical structure and characteristics of the Ag2Se thin films were examined using X-ray and atomic force microscopy (AFM) based techniques. The Ag2Se films surface morphology was examined by AFM techniques; the investigation gave average diameter, surface roughness, and grain size mutation values with increasing annealing temperature
... Show MoreThe structural, optical and photoelectrical properties of fabricated diffusion heterojunction (HJ) solar cell, from n-type c-Si wafer of [400] direction with Boron, has been studied. AgAl alloys was used because of its properties that affect as a good connection materials. TiO2 has been used as a reflecting layer to increase the absorption radiation. The HJ has direct allowed energy gap equal to 3.1 eV. The c-Si/B HJ solar cell yielded has an active area conversion efficiency of 16.4% with an open circuit voltage of (Voc) 0.592V, short circuit current (Isc) of 2.042mA, fill factor (F.F) of 0.682 and % =10.54.