The local resolving neighborhood of a pair of vertices for and is if there is a vertex in a connected graph where the distance from to is not equal to the distance from to , or defined by . A local resolving function of is a real valued function such that for and . The local fractional metric dimension of graph denoted by , defined by In this research, the author discusses about the local fractional metric dimension of comb product are two graphs, namely graph and graph , where graph is a connected graphs and graph is a complate graph and denoted by We get
The research discussed the propositions of functional structures and the requirements for their transformation according to the variables of use and human interaction through the variables of functions with one form products، multifunctional variables، and transforming form in one product. The patterns of user’s interaction with products were discussed through the variables of functional type، starting from defining the types of functions in the industrial product structures to: practical functions، which were classified into: informational functions، ergonomic functions، use، handling، comfort، global، anthropometric adaptation and physical postures. While the interaction variables were discussed according to the meaning fun
... Show MoreA simple, precise, and sensitive spectrophotometric method has been established for the analysis of doxycycline. The method includes direct charge transfer complexation of doxycycline withp-Bromanil in acetonitrileto form a colored complex. The intensely colored product formed was quantified based on the absorption band at 377 nm under optimum condition. Beer’s law is obeyed in the concentration range of 1–50 μg.mL-1 with molar absorptivity of 1.5725x104 L.mol-1.cm-1, Sandell's sensitivity index (0.0283) μg.cm-2, detection limit of 0.1064 μg.mL-1, quantification limit 0.3224 μg.mL-1 and association constant of the formed complex (0.75x103). The developed method could find application in routine quality control of doxycycline and has
... Show MoreThe main aim of this paper is to introduce the concept of a Fuzzy Internal Direct Product of fuzzy subgroups of group . We study some properties and prove some theorems about this concept ,which is very important and interesting of fuzzy groups and very useful in applications of fuzzy mathematics in general and especially in fuzzy groups.
The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of
... Show MoreThis booklet contains the basic data and graphs forCOVID-19 in Iraq during the first three months of thepandemic ( 24 February to 19 May - 2020 ) , It isperformed to help researchers regarding this health problem (PDF) Information Booklet COVID-19 Graphs For Iraq First 3 Months. Available from: https://www.researchgate.net/publication/341655944_Information_Booklet_COVID-19_Graphs_For_Iraq_First_3_Months#fullTextFileContent [accessed Oct 26 2024].
In this paper, a sufficient condition for stability of a system of nonlinear multi-fractional order differential equations on a finite time interval with an illustrative example, has been presented to demonstrate our result. Also, an idea to extend our result on such system on an infinite time interval is suggested.
In this research for each positive integer integer and is accompanied by connecting that number with the number of Bashz Attabq result any two functions midwives to derive a positive integer so that there is a point
In this article, the backstepping control scheme is proposed to stabilize the fractional order Riccati matrix differential equation with retarded arguments in which the fractional derivative is presented using Caputo's definition of fractional derivative. The results are established using Mittag-Leffler stability. The fractional Lyapunov function is defined at each stage and the negativity of an overall fractional Lyapunov function is ensured by the proper selection of the control law. Numerical simulation has been used to demonstrate the effectiveness of the proposed control scheme for stabilizing such type of Riccati matrix differential equations.
Abstract:
The research aims to diagnose the relationship between the environmental tax and the development of the sustainable social dimension, where the environmental tax is considered a tool in promoting sustainable development according to its economic, social and environmental dimensions through the application of legislation and instructions for environmental protection, and that imposing an environmental tax will have a clear impact in achieving the dimensions of sustainable development and compliance With regard to the social dimension, the research relied on the financial data for the years (2019-2022) in obtaining information. The research reached a set of results, the most prominent of which was
... Show More