The local resolving neighborhood of a pair of vertices for and is if there is a vertex in a connected graph where the distance from to is not equal to the distance from to , or defined by . A local resolving function of is a real valued function such that for and . The local fractional metric dimension of graph denoted by , defined by In this research, the author discusses about the local fractional metric dimension of comb product are two graphs, namely graph and graph , where graph is a connected graphs and graph is a complate graph and denoted by We get
In this article, an efficient reliable method, which is the residual power series method (RPSM), is used in order to investigate the approximate solutions of conformable time fractional nonlinear evolution equations with conformable derivatives under initial conditions. In particular, two types of equations are considered, which are time coupled diffusion-reaction equations (CD-REs) and MKdv equations coupled with conformable fractional time derivative of order α. The attitude of RPSM and the influence of different values of α are shown graphically.
In this paper, we proved coincidence points theorems for two pairs mappings which are defined on nonempty subset in metric spaces by using condition (1.1). As application, we established a unique common fixed points theorems for these mappings by using the concept weakly compatible (R-weakly commuting) between these mappings.
The research discussed the topic of the functional role of responsive materials in being elements of a functional transformation in the design of industrial products, based on the study of the structures of smart materials and their performance capabilities at the level of action and self-reaction that characterize this type of materials.
Basic features of responsive materials have been identified to be elements of self-functional insertion into the industrial product design, which contributes to raising the efficiency and functional capacity of the industrial product and enhancing the ability of products to perform self-acting interactions in the structural structure of the material structure of the product and its ability to res
... Show MoreThe product of rn-paracompact and rn-strongly paracompact are briefly disc. ussed.
We define L-contraction mapping in the setting of D-metric spaces analogous to L-contraction mappings [1] in complete metric spaces. Also, give a definition for general D- matric spaces.And then prove the existence of fixed point for more general class of mappings in generalized D-metric spaces.
For a nonempty subset X of a group G and a positive integer m , the product of X , denoted by Xm ,is the set Xm = That is , Xm is the subset of G formed by considering all possible ordered products of m elements form X. In the symmetric group Sn, the class Cn (n odd positive integer) split into two conjugacy classes in An denoted Cn+ and Cn- . C+ and C- were used for these two parts of Cn. This work we prove that for some odd n ,the class C of 5- cycle in Sn has the property that = An n 7 and C+ has the property that each element of C+ is conjugate to its inverse, the square of each element of it is the element of C-, these results were used to prove that C+ C- = An exceptio
... Show MoreThe research dealt with a comparative study between some semi-parametric estimation methods to the Partial linear Single Index Model using simulation. There are two approaches to model estimation two-stage procedure and MADE to estimate this model. Simulations were used to study the finite sample performance of estimating methods based on different Single Index models, error variances, and different sample sizes , and the mean average squared errors were used as a comparison criterion between the methods were used. The results showed a preference for the two-stage procedure depending on all the cases that were used