The local resolving neighborhood of a pair of vertices for and is if there is a vertex in a connected graph where the distance from to is not equal to the distance from to , or defined by . A local resolving function of is a real valued function such that for and . The local fractional metric dimension of graph denoted by , defined by In this research, the author discusses about the local fractional metric dimension of comb product are two graphs, namely graph and graph , where graph is a connected graphs and graph is a complate graph and denoted by We get
Fractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity crit
... Show MoreIn this paper, we generalize the definition of fuzzy inner product space that is introduced by Lorena Popa and Lavinia Sida on a complex linear space. Certain properties of the generalized fuzzy inner product function are shown. Furthermore, we prove that this fuzzy inner product produces a Nadaban-Dzitac fuzzy norm. Finally, the concept of orthogonality is given and some of its properties are proven.
A complete metric space is a well-known concept. Kreyszig shows that every non-complete metric space can be developed into a complete metric space , referred to as completion of .
We use the b-Cauchy sequence to form which “is the set of all b-Cauchy sequences equivalence classes”. After that, we prove to be a 2-normed space. Then, we construct an isometric by defining the function from to ; thus and are isometric, where is the subset of composed of the equivalence classes that contains constant b-Cauchy sequences. Finally, we prove that is dense in , is complete and the uniqueness of is up to isometrics
In this ˑwork, we present theˑ notion of the ˑgraph for a KU-semigroup as theˑundirected simple graphˑ with the vertices are the elementsˑ of and weˑˑstudy the ˑgraph ofˑ equivalence classesˑofˑ which is determinedˑ by theˑ definition equivalenceˑ relation ofˑ these verticesˑ, andˑ then some related ˑproperties areˑ given. Several examples are presented and some theorems are proved. Byˑ usingˑ the definitionˑ ofˑ isomorphicˑ graph, ˑwe showˑ thatˑ the graphˑ of equivalence ˑclasses ˑand the ˑgraphˑof ˑa KU-semigroup ˑ areˑ theˑ sameˑ, in special cases.
In this ˑwork, we present theˑ notion of the ˑgraph for a KU-semigroup as theˑundirected simple graphˑ with the vertices are the elementsˑ of and weˑˑstudy the ˑgraph ofˑ equivalence classesˑofˑ which is determinedˑ by theˑ definition equivalenceˑ relation ofˑ these verticesˑ, andˑ then some related ˑproperties areˑ given. Several examples are presented and some theorems are proved. Byˑ usingˑ the definitionˑ ofˑ isomorphicˑ graph, ˑwe showˑ thatˑ the graphˑ of equivalence ˑclasses ˑand the ˑgraphˑof ˑa KU-semigroup ˑ areˑ theˑ sameˑ,
... Show MoreWith simple and undirected connected graph Φ, the Schultz and modified Schultz polynomials are defined as and , respectively, where the summation is taken over all unordered pairs of distinct vertices in V(Φ), where V(Φ) is the vertex set of Φ, degu is the degree of vertex u and d(v,u) is the ordinary distance between v and u, u≠v. In this study, the Shultz distance, modified Schultz distance, the polynomial, index, and average for both have been generalized, and this generalization has been applied to some special graphs.
Metric type II bursts are formed from shocks driven by CME or flares which is
indicative of particles (SEPs) accelerated to high energies. This work aims to
investigate the metric type II bursts, CMEs and flare for twenty years (1996-2016,
inclusive) over two solar cycles 23 and 24. The total metric type II bursts was 1378
events divided into two groups: first group associated with CMEs regardless their
properties and this group has (1147) events. The second group associated with flares
which has (231) events. The interstice fraction of this research is the metric type II
associated with CME is 83% whereas only 17% with flare where this very close to
the previous study in 2005 which found 81% despite it was for on
The main purpose of this paper is to introduce and prove some fixed point theorems for two maps that
satisfy -contractive conditions with rational expression in partially ordered metric spaces, our results improve and unify a multitude of fixed point theorems and generalize some recent results in ordered partially metric space.
This paper proves the existence of face antimagic labeling for double duplication of barycentric subdivision of cycle and some other graphs