In this paper, several conditions are put in order to compose the sequence of partial sums , and of the fractional operators of analytic univalent functions , and of bounded turning which are bounded turning too.
In this paper, we will introduce a new concept of operators in b-Hilbert space, which is respected to self- adjoint operator and positive operator. Moreover we will show some of their properties as well as the relation between them.
In This paper generalized spline method and Caputo differential operator is applied to solve linear fractional integro-differential equations of the second kind. Comparison of the applied method with exact solutions reveals that the method is tremendously effective.
The accumulation of construction and demolition waste is one of the major problems in modern construction. Hence, this research investigates the use of waste brick in concrete. Seven different concrete mixes were investigated in this study: a control concrete mix, three mixes with volumetric replacement (10, 20, and 30)% of natural aggregate with brick aggregate, and two mixes with the addition of nano brick powder at a percentage level of 5– 10% by weight of cementitious materials. And the last one was mixed with 10% nano brick and 10% coarse brick aggregate. The experimental results for the additive of nano brick powder showed an enhancement in mechanical properties (compressive,
In this article, the backstepping control scheme is proposed to stabilize the fractional order Riccati matrix differential equation with retarded arguments in which the fractional derivative is presented using Caputo's definition of fractional derivative. The results are established using Mittag-Leffler stability. The fractional Lyapunov function is defined at each stage and the negativity of an overall fractional Lyapunov function is ensured by the proper selection of the control law. Numerical simulation has been used to demonstrate the effectiveness of the proposed control scheme for stabilizing such type of Riccati matrix differential equations.
In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth
... Show MoreIn this present paper, we obtain some differential subordination and superordination results, by using generalized operators for certain subclass of analytic functions in the open unit disk. Also, we derive some sandwich results.
Recently, the financial mathematics has been emerged to interpret and predict the underlying mechanism that generates an incident of concern. A system of differential equations can reveal a dynamical development of financial mechanism across time. Multivariate wiener process represents the stochastic term in a system of stochastic differential equations (SDE). The standard wiener process follows a Markov chain, and hence it is a martingale (kind of Markov chain), which is a good integrator. Though, the fractional Wiener process does not follow a Markov chain, hence it is not a good integrator. This problem will produce an Arbitrage (non-equilibrium in the market) in the predicted series. It is undesired property that leads to erroneous conc
... Show MoreAn α-fractional integral and derivative of real function have been introduced in new definitions and then, they compared with the existing definitions. According to the properties of these definitions, the formulas demonstrate that they are most significant and suitable in fractional integrals and derivatives. The definitions of α-fractional derivative and integral coincide with the existing definitions for the polynomials for 0 ≤ α < 1. Furthermore, if α = 1, the proposed definitions and the usual definition of integer derivative and integral are identical. Some of the properties of the new definitions are discussed and proved, as well, we have introduced some applications in the α- fractional derivatives and integral
... Show More