In this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact operators. Finally, if T belongs to FC(V,U) and dimension of V is finite then T is fuzzy compact is proved.
The purpose of this research is to introduce a concept of general partial metric spaces as a generalization of partial metric space. Give some results and properties and find relations between general partial metric space, partial metric spaces and D-metric spaces.
The two-dimensional transient heat conduction through a thermal insulation of temperature dependent thermal properties is investigated numerically using the FVM. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner surface with a step change in temperature and subjected at its outer surface with a natural convection boundary condition associated with a periodic change in ambient temperature and heat flux of solar radiation. Two thermal insulation materials were selected. The fully implicit time scheme is selected to represent the time discretization. The arithmetic mean thermal conductivity is chosen to be the value of the approximated thermal conductivity at the i
... Show MoreAbstract
The aim of this research is to concentrate on the of knowledge management activities, initial activities: (Acquisition, Selection, Generation, Assimilation, Emission) knowledge, and support activities: (Measurement, Control, Coordination, Leadership) that is manipulate and controlling in achieving knowledge management cases in organization, that’s is leads to knowledge chain model, then determining the level of membership for these activities to knowledge chain model in a sample of Iraqi organization pushed by knowledge (Universities). The research depends on check list for gaining the data required, theses check list designed by apparently in diagnosing research dimensions and measurem
... Show MoreThis research talked about the importance of adjacent structures for informing the stage show for children. The researcher began from the importance of adjacent structures for informing the show to introduce the various and different proofs, on the level of creativity and artistic shape of the accomplishment over it’s shifts that contribute to formation the show and it's intellectual, artistic, technical and cognitive Marks that contribute in dynamism the interactive show and contact the idea that connect with the design and directional vision for the beauty and cognitive. Lead to the eager operation in attention, sensitive and attractive the child. The research consist of four chapters: The first chapter include methodological framewo
... Show MoreIn this paper, a procedure to establish the different performance measures in terms of crisp value is proposed for two classes of arrivals and multiple channel queueing models, where both arrival and service rate are fuzzy numbers. The main idea is to convert the arrival rates and service rates under fuzzy queues into crisp queues by using graded mean integration approach, which can be represented as median rule number. Hence, we apply the crisp values obtained to establish the performance measure of conventional multiple queueing models. This procedure has shown its effectiveness when incorporated with many types of membership functions in solving queuing problems. Two numerical illustrations are presented to determine the validity of the
... Show MoreIn this study, we investigated the effect of Bromocresol green dye (BCG) of the PMMA thin films optical properties. Films of Poly Methyl Methacrylate doped by 10% BCG doping ratio to prepared two concentrations 2x10-4 and 6x10-4 M of PMMA-BCG dye were deposited on glass substrate using free casting method at room temperature. The optical properties of the films were determined using UV-Visible absorbance and transmittance spectra at the 300 - 900 nm wavelength range. The linear absorption coefficient and the extinction coefficient were calculated. The results showed that the optical properties were increasing by increasing the dye concentration, while the optical energy gap was decreasing with the doping. Also from
... Show MoreIn this work, linear and nonlinear optical properties of two types of Iraqi heavy crude oil extracted from fields in southern Iraq were determined. The nonlinear optical properties were measured utilizing Z-scan technology with He-Ne laser at 632.8 nm. It was found that nonlinear refractive index (NLR) values for the Basra and Kut heavy crude oil samples are 6.34381×10-4 and 8.25108×10-4 cm2/mW, respectively, while those for the nonlinear absorption coefficient (NLA) are 2.68942×10-5 and 2.58874×10-5 , respectively. These results showed that the two samples with linear and nonlinear optical properties can be used in optics field applications as
... Show MoreThe goal of this study is to provide a new explicit iterative process method approach for solving maximal monotone(M.M )operators in Hilbert spaces utilizing a finite family of different types of mappings as( nonexpansive mappings,resolvent mappings and projection mappings. The findings given in this research strengthen and extend key previous findings in the literature. Then, utilizing various structural conditions in Hilbert space and variational inequality problems, we examine the strong convergence to nearest point projection for these explicit iterative process methods Under the presence of two important conditions for convergence, namely closure and convexity. The findings reported in this research strengthen and extend
... Show MoreIn this paper, we introduce a new type of Drazin invertible operator on Hilbert spaces, which is called D-operator. Then, some properties of the class of D-operators are studied. We prove that the D-operator preserves the scalar product, the unitary equivalent property, the product and sum of two D-operators are not D-operator in general but the direct product and tenser product is also D-operator.