In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using Mathcad 15.and graphic in Matlab R2015a.
Recently Tobit Quantile Regression(TQR) has emerged as an important tool in statistical analysis . in order to improve the parameter estimation in (TQR) we proposed Bayesian hierarchical model with double adaptive elastic net technique and Bayesian hierarchical model with adaptive ridge regression technique .
in double adaptive elastic net technique we assume different penalization parameters for penalization different regression coefficients in both parameters λ1and λ2 , also in adaptive ridge regression technique we assume different penalization parameters for penalization different regression coefficients i
... Show MoreAbstract
The Non - Homogeneous Poisson process is considered as one of the statistical subjects which had an importance in other sciences and a large application in different areas as waiting raws and rectifiable systems method , computer and communication systems and the theory of reliability and many other, also it used in modeling the phenomenon that occurred by unfixed way over time (all events that changed by time).
This research deals with some of the basic concepts that are related to the Non - Homogeneous Poisson process , This research carried out two models of the Non - Homogeneous Poisson process which are the power law model , and Musa –okumto , to estimate th
... Show MoreAbstract
The method binery logistic regression and linear discrimint function of the most important statistical methods used in the classification and prediction when the data of the kind of binery (0,1) you can not use the normal regression therefore resort to binary logistic regression and linear discriminant function in the case of two group in the case of a Multicollinearity problem between the data (the data containing high correlation) It became not possible to use binary logistic regression and linear discriminant function, to solve this problem, we resort to Partial least square regression.
In this, search th
... Show MoreThe main objective of this work is to introduce and investigate fixed point (F. p) theorems for maps that satisfy contractive conditions in weak partial metric spaces (W.P.M.S), and give some new generalization of the fixed point theorems of Mathews and Heckmann. Our results extend, and unify a multitude of (F. p) theorems and generalize some results in (W.P.M.S). An example is given as an illustration of our results.
The pre - equilibrium and equilibrium double differential cross
sections are calculated at different energies using Kalbach Systematic
approach in terms of Exciton model with Feshbach, Kerman and
Koonin (FKK) statistical theory. The angular distribution of nucleons
and light nuclei on 27Al target nuclei, at emission energy in the center
of mass system, are considered, using the Multistep Compound
(MSC) and Multistep Direct (MSD) reactions. The two-component
exciton model with different corrections have been implemented in
calculating the particle-hole state density towards calculating the
transition rates of the possible reactions and follow up the calculation
the differential cross-sections, that include MS
ان الغرض من هذا البحث هو المزج بين القيود الضبابية والاحتمالية. كما يهدف الى مناقشة اكثر حالات مشكلات البرمجة الضبابية شيوعا وهي عندما تكون المشكلة الضبابية تتبع دالة الانتماء مرة دالة الاتنماء المثلثية مرة اخرى، من خلال التطبيق العملي والتجريبي. فضلا عن توظيف البرمجة الخطية الضبابية في معالجة مشكلات تخطيط وجدولة الإنتاج لشركة العراق لصناعة الأثاث، وكذلك تم استخدام الطرائق الكمية للتنبؤ بالطلب واعتماده
... Show MoreIn this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
This paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.