A new generalizations of coretractable modules are introduced where a module is called t-essentially (weakly t-essentially) coretractable if for all proper submodule of , there exists f End( ), f( )=0 and Imf tes (Im f + tes ). Some basic properties are studied and many relationships between these classes and other related one are presented.
A (b,t)-blocking set B in PG(2,q) is set of b points such that every line of PG(2,q) intersects B in at least t points and there is a line intersecting B in exactly t points. In this paper we construct a minimal (b,t)-blocking sets, t = 1,2,3,4,5 in PG(2,5) by using conics to obtain complete arcs and projective codes related with them.
Achieve breastfeeding book and theft book
To the end of the door cut the way of the manuscript
Sailing Forum for Sheikh Ibrahim bin Mohammed Halabi
(T: 659 H)
In this work, the notion of principally quasi- injective semimodule is introduced, discussing the conditions needed to get properties and characterizations similar or related to the case in modules.
Let be an -semimodule with endomorphism semiring Ș. The semimodule is called principally quasi-injective, if every -homomorphism from any cyclic subsemimodule of to can be extended to an endomorphism of .
This paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different
... Show MoreAn R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules
Laboratory studies were conducted at the biological control unit, college of Agriculture, University of Baghdad to evaluate some biological aspects of the predator Chilocorus bipustulatus (Coleoptera: Coccinellidae), which is considered one of the most important predators on many insect pests, especially the scale insect, Parlatoria blanchardi, (Homoptera: Diaspididae) on date palms. The results showed that biological parameters of the predator were varied according to different degree of temperature. Egg incubation period was significantly different and reached to 7.5 and 5.44 day at 25 and 30°C respectively, Fertility was the same 100% at both temperature degrees. Larval growth periods were 17.41 and 16.12 day as well as the mortality du
... Show MoreIn this paper, we introduce a new concept named St-polyform modules, and show that the class of St-polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-Dedekind and ?-nonsingular modules. Various properties of such modules are obtained. Another characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of modules is considered. The relationships of St-polyform with some related concepts are investigated. Furthermore, we introduce other new classes which are; St-semisimple and ?-non St-singular modules, and we verify that the class of St-polyform modules lies between them.
Let be a commutative ring with 1 and be left unitary . In this paper we introduced and studied concept of semi-small compressible module (a is said to be semi-small compressible module if can be embedded in every nonzero semi-small submodule of . Equivalently, is semi-small compressible module if there exists a monomorphism , , is said to be semi-small retractable module if , for every non-zero semi-small sub module in . Equivalently, is semi-small retractable if there exists a homomorphism whenever . In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible and retractable respectively and give some of their adv
... Show MoreLet be a commutative ring with 1 and be left unitary . In this papers we introduced and studied concept P-small compressible (An is said to be P-small compressible if can be embedded in every of it is nonzero P-small submodule of . Equivalently, is P-small compressible if there exists a monomorphism , , is said to be P-small retractable if , for every non-zero P-small submodule of . Equivalently, is P-small retractable if there exists a homomorphism whenever as a generalization of compressible and retractable respectively and give some of their advantages characterizations and examples.