This paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.
In this paper, Bayesian estimator for the parameter and reliability function of inverse Rayleigh distribution (IRD) were obtained Under three types of loss function, namely, square error loss function (SELF), Modified Square error loss function (MSELF) and Precautionary loss function (PLF),taking into consideration the informative and non- informative prior. The performance of such estimators was assessed on the basis of mean square error (MSE) criterion by performing a Monte Carlo simulation technique.
In this paper, the survival function has been estimated for the patients with lung cancer using different parametric estimation methods depending on sample for completing real data which explain the period of survival for patients who were ill with the lung cancer based on the diagnosis of disease or the entire of patients in a hospital for a time of two years (starting with 2012 to the end of 2013). Comparisons between the mentioned estimation methods has been performed using statistical indicator mean squares error, concluding that the estimation of the survival function for the lung cancer by using pre-test singles stage shrinkage estimator method was the best . <
... Show MoreIn this paper, two parameters for the Exponential distribution were estimated using the
Bayesian estimation method under three different loss functions: the Squared error loss function,
the Precautionary loss function, and the Entropy loss function. The Exponential distribution prior
and Gamma distribution have been assumed as the priors of the scale γ and location δ parameters
respectively. In Bayesian estimation, Maximum likelihood estimators have been used as the initial
estimators, and the Tierney-Kadane approximation has been used effectively. Based on the MonteCarlo
simulation method, those estimators were compared depending on the mean squared errors (MSEs).The results showed that the Bayesian esti
In this article, a new class of analytic functions which is defined by terms of a quasi-subordination is introduced. The coefficient estimates, including the classical inequality of functions belonging to this class, are then derived. Also, several special improving results for the associated classes involving the subordination are presented.
Survival analysis is one of the types of data analysis that describes the time period until the occurrence of an event of interest such as death or other events of importance in determining what will happen to the phenomenon studied. There may be more than one endpoint for the event, in which case it is called Competing risks. The purpose of this research is to apply the dynamic approach in the analysis of discrete survival time in order to estimate the effect of covariates over time, as well as modeling the nonlinear relationship between the covariates and the discrete hazard function through the use of the multinomial logistic model and the multivariate Cox model. For the purpose of conducting the estimation process for both the discrete
... Show MoreIn this paper we introduced a new class of - called - and study their basic properties in nano topological spaces. We also introduce -closure and -interior and study some of their fundamental properties.
A fault is an error that has effects on system behaviour. A software metric is a value that represents the degree to which software processes work properly and where faults are more probable to occur. In this research, we study the effects of removing redundancy and log transformation based on threshold values for identifying faults-prone classes of software. The study also contains a comparison of the metric values of an original dataset with those after removing redundancy and log transformation. E-learning and system dataset were taken as case studies. The fault ratio ranged from 1%-31% and 0%-10% for the original dataset and 1%-10% and 0%-4% after removing redundancy and log transformation, respectively. These results impacted direct
... Show MoreIn this paper, suggested method as well as the conventional methods (probability
plot-(p.p.) for estimations of the two-parameters (shape and scale) of the Weibull
distribution had proposed and the estimators had been implemented for different
sample sizes small, medium, and large of size 20, 50, and 100 respectively by
simulation technique. The comparisons were carried out between different methods
and sample sizes. It was observed from the results that suggested method which
were performed for the first time (as far as we know), by using MSE indicator, the
comparisons between the studied and suggested methods can be summarized
through extremely asymptotic for indicator (MSE) results by generating random
error
In this paper, the researcher suggested using the Genetic algorithm method to estimate the parameters of the Wiener degradation process, where it is based on the Wiener process in order to estimate the reliability of high-efficiency products, due to the difficulty of estimating the reliability of them using traditional techniques that depend only on the failure times of products. Monte Carlo simulation has been applied for the purpose of proving the efficiency of the proposed method in estimating parameters; it was compared with the method of the maximum likelihood estimation. The results were that the Genetic algorithm method is the best based on the AMSE comparison criterion, then the reliab
... Show More