This paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.
In this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .
Diabetes mellitus type 2 (T2DM) is a chronic and progressive condition, which affects people all around the world. The risk of complications increases with age if the disease is not managed properly. Diabetic neuropathy is caused by excessive blood glucose and lipid levels, resulting in nerve damage. Apelin is a peptide hormone that is found in different human organs, including the central nervous system and adipose tissue. The aim of this study is to estimate Apelin levels in diabetes type 2 and Diabetic peripheral Neuropathy (DPN) Iraqi patients and show the extent of peripheral nerve damage. The current study included 120 participants: 40 patients with Diabetes Mellitus, 40 patients with Diabetic peripheral Neuropathy, and 40 healthy
... Show MoreGeneralized Additive Model has been considered as a multivariate smoother that appeared recently in Nonparametric Regression Analysis. Thus, this research is devoted to study the mixed situation, i.e. for the phenomena that changes its behaviour from linear (with known functional form) represented in parametric part, to nonlinear (with unknown functional form: here, smoothing spline) represented in nonparametric part of the model. Furthermore, we propose robust semiparametric GAM estimator, which compared with two other existed techniques.
This paper presents a research for magnetohydrodynamic (MHD) flow of an incompressible generalized Burgers’ fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of the generalized Burgers’ fluid. By using the discrete Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear stress are obtained in terms of Fox H- function for the following two problems: (i) flow due to a constant pressure gradient, and (ii) flow due to due to a sinusoidal pressure gradient. The solutions for
... Show MoreChannel estimation (CE) is essential for wireless links but becomes progressively onerous as Fifth Generation (5G) Multi-Input Multi-Output (MIMO) systems and extensive fading expand the search space and increase latency. This study redefines CE support as the process of learning to deduce channel type and signal-tonoise ratio (SNR) directly from per-tone Orthogonal Frequency-Division Multiplexing (OFDM) observations,with blind channel state information (CSI). We trained a dual deep model that combined Convolutional Neural Networks (CNNs) with Bidirectional Recurrent Neural Networks (BRNNs). We used a lookup table (LUT) label for channel type (class indices instead of per-tap values) and ordinal supervision for SNR (0–20 dB,5-dB steps). T
... Show MoreCancer is in general not a result of an abnormality of a single gene but a consequence of changes in many genes, it is therefore of great importance to understand the roles of different oncogenic and tumor suppressor pathways in tumorigenesis. In recent years, there have been many computational models developed to study the genetic alterations of different pathways in the evolutionary process of cancer. However, most of the methods are knowledge-based enrichment analyses and inflexible to analyze user-defined pathways or gene sets. In this paper, we develop a nonparametric and data-driven approach to testing for the dynamic changes of pathways over the cancer progression. Our method is based on an expansion and refinement of the pathway bei
... Show MoreWithin this work, to promote the efficiency of organic-based solar cells, a series of novel A-π-D type small molecules were scrutinised. The acceptors which we designed had a moiety of N, N-dimethylaniline as the donor and catechol moiety as the acceptor linked through various conjugated π-linkers. We performed DFT (B3LYP) as well as TD-DFT (CAM-B3LYP) computations using 6-31G (d,p) for scrutinising the impact of various π-linkers upon optoelectronic characteristics, stability, and rate of charge transport. In comparison with the reference molecule, various π-linkers led to a smaller HOMO–LUMO energy gap. Compared to the reference molecule, there was a considerable red shift in the molecules under study (A1–A4). Therefore, based on
... Show MoreThe 3-parameter Weibull distribution is used as a model for failure since this distribution is proper when the failure rate somewhat high in starting operation and these rates will be decreased with increasing time .
In practical side a comparison was made between (Shrinkage and Maximum likelihood) Estimators for parameter and reliability function using simulation , we conclude that the Shrinkage estimators for parameters are better than maximum likelihood estimators but the maximum likelihood estimator for reliability function is the better using statistical measures (MAPE)and (MSE) and for different sample sizes.
Note:- ns : small sample ; nm=median sample
... Show More