The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
Reinforced concrete slabs are one of the most important and complicated elements of a building. For supported edges slabs, if the ratio of long span to short span is equal or less than two then the slab is considered as two-way slab otherwise is consider as one-way slab. Two-way reinforced concrete slabs are common in use in reinforced concrete buildings due to geometrically arrangement of columns suggested by architects who prefer a symmetric distribution of columns in their plans. Elastic theory is usually used for analysis of concrete slabs. However, for several reasons design methods based on elastic principles are limited in their function. Correspondingly, limit state analysis o
This research investigates the subject of the impact of wars (as a manifestation of crisis) on architecture, and the extent of continuing wars physical and moral results of wars, even after the end of the cause of the crisis. The impact of different rebuilding which exposed to the effects of the war seems different in crisis regions.
The problem of research is about the uncertainty of the impact of the way chooses for reconstructing the buildings after wars in the continuity of the crisis of war. The goals of this research are to clarify the influence of methods of reconstruction of buildings in a city chosen which is Beirut, on the continuation of the war crisis with the argument of demolishing and rebuilding newly or keeping tr
... Show MoreIn this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar
... Show MoreThe present work describes numerical and experimental investigation of the heat transfer characteristics in a plate-fin, having built-in piezoelectric actuator mounted on the base plate (substrate). The geometrical configuration considered in the present work is representative of a single element of the plate-fin and triple fins. Air is taken as the working fluid. A performance data for a single rectangular fin and triple fins are provided for different frequency levels (5, 30 and
50HZ) , different input power (5,10,20,30,40 and 50W) and different inlet velocity (0.5, 1, 2, 3, 4, 5 and 6m/s) for the single rectangular fin and triple fins with and without oscillation. The investigation was also performed with different geometrical fin
The local resolving neighborhood of a pair of vertices for and is if there is a vertex in a connected graph where the distance from to is not equal to the distance from to , or defined by . A local resolving function of is a real valued function such that for and . The local fractional metric dimension of graph denoted by , defined by In this research, the author discusses about the local fractional metric dimension of comb product are two graphs, namely graph and graph , where graph is a connected graphs and graph is a complate graph &
... Show MoreFor many problems in Physics and Computational Fluid Dynamics (CFD), providing an accurate approximation of derivatives is a challenging task. This paper presents a class of high order numerical schemes for approximating the first derivative. These approximations are derived based on solving a special system of equations with some unknown coefficients. The construction method provides numerous types of schemes with different orders of accuracy. The accuracy of each scheme is analyzed by using Fourier analysis, which illustrates the dispersion and dissipation of the scheme. The polynomial technique is used to verify the order of accuracy of the proposed schemes by obtaining the error terms. Dispersion and dissipation errors are calculated
... Show MoreConstruction projects have become a changing dramatically in recent decades and that the goal of the beneficiaries of the implementation of structural project is to complete the work with less time and within the cost of the specific and the best possible quality may sometimes happen that highlights the importance of time on the rest of the items at the implementation of projects for various reasons, including the need to use the project as soon as possible possible change rapidly to customer's requests, but the high cost of the project represents the biggest obstacle for entrepreneurs with its effects on the quality and the time workers, and is a measure of those elements in monetary terms is the key to integration between them, so the
... Show MoreENGLISH