In this paper, the concept of fully stable Banach Algebra modules relative to an ideal has been introduced. Let A be an algebra, X is called fully stable Banach A-module relative to ideal K of A, if for every submodule Y of X and for each multiplier ?:Y?X such that ?(Y)?Y+KX. Their properties and other characterizations for this concept have been studied.
In thisˑ paperˑ, we apply the notion ofˑ intuitionisticˑ fuzzyˑ n-fold KU-ideal of KU-algebra. Some types of ideals such as intuitionistic fuzzy KU-ideal, intuitionisticˑ fuzzy closed idealˑ and intuitionistic fuzzy n-fold KU-ideal are studied. Also, the relations between intuitionistic fuzzy n-fold KU-ideal and intuitionistic fuzzy KU-ideal are discussed. Furthermore, aˑ fewˑ results of intuitionisticˑ fuzzyˑ n-ˑfold KU-ideals of a KU-algebra underˑ homomorphismˑ are discussed.
In this paper it was presented the idea quasi-fully cancellation fuzzy modules and we will denote it by Q-FCF(M), condition universalistic idea quasi-fully cancellation modules It .has been circulated to this idea quasi-max fully cancellation fuzzy modules and we will denote it by Q-MFCF(M). Lot of results and properties have been studied in this research.
Let R be a commutative ring with unity and let M, N be unitary R-modules. In this research, we give generalizations for the concepts: weakly relative injectivity, relative tightness and weakly injectivity of modules. We call M weakly N-quasi-injective, if for each f  Hom(N,ï) there exists a submodule X of ï such that f (N) ïƒ X ≈ M, where ï is the quasi-injective hull of M. And we call M N-quasi-tight, if every quotient N / K of N which embeds in ï embeds in M. While we call M weakly quasi-injective if M is weakly N-quasiinjective for every finitely generated R-module N. Moreover, we generalize some properties of weakly N-injectiv
... Show MoreThe duo module plays an important role in the module theory. Many researchers generalized this concept such as Ozcan AC, Hadi IMA and Ahmed MA. It is known that in a duo module, every submodule is fully invariant. This paper used the class of St-closed submodules to work out a module with the feature that all St-closed submodules are fully invariant. Such a module is called an Stc-duo module. This class of modules contains the duo module properly as well as the CL-duo module which was introduced by Ahmed MA. The behaviour of this new kind of module was considered and studied in detail,for instance, the hereditary property of the St-duo module was investigated, as the result; under certain conditions, every St-cl
... Show MoreIn this paper we introduce the notions of bi-ideal with respect to an element r
denoted by (r-bi- ideal ) of a near ring , and the notion fuzzy bi- ideal with respect
to an element of a near ring and the relation between F-r-bi-ideal and r-bi-ideal of
the near ring, we studied the image and inverse image of r-bi- ideal under
epimomorphism ,the intersection of r-bi- ideals and the relation between this ideal
and the quasi ideal of a near ring, also we studied the notion intuitionistic fuzzy biideal
with respect to an element r of the near ring N, and give some theorem about
this ideal .
In this work, we introduced and studied a new kind of soft mapping on soft topological spaces with an ideal, which we called soft strongly generalized mapping with respect an ideal I, we studied the concepts like SSIg-continuous, Contra-SSIg-continuous, SSIg-open, SSIg-closed and SSIg-irresolute mapping and the relations between these kinds of mappings and the composition of two mappings of the same type of two different types, with proofs or counter examples
In this work, we present the notion of a multiplier on AT-algebra and investigate several properties. Also, some theorems and examples are discussed. The notions of the kernel and the image of multipliers are defined. After that, some propositions related to isotone and regular multipliers are proved. Finally, the Left and the Right derivations of the multiplier are obtained
In this article, we introduce a class of modules that is analogous of generalized extending modules. First we define a module M to be a generalized ECS if and only if for each ec-closed submodule A of M, there exists a direct summand D of M such that is singular, and then we locate generalized ECS between the other extending generalizations. After that we present some of characterizations of generalized ECS condition. Finally, we show that the direct sum of a generalized ECS need not be generalized ECS and deal with decompositions for be generalized ECS concept.
The aim of this paper is to introduce and study a new kind of graphs associated to an ideal of a commutative ring. Let ℛ be a commutative ring with identity, and I(ℛ) be the set of all non-trivial ideals of ℛ with S I(ℛ). The sum ideal graph associated to S, denoted by Ψ(ℛ, S), is the undirected graph with vertex set {A I(ℛ): S⊂A+B, for some B I(ℛ)} where two ideal vertices A and B are adjacent if and only if A B and S⊂A+B. In this paper we establish some of characterizations and results of this kind of graph with providing some examples.
Given an exterior algebra over a finite dimension vector space v, and let , where is a graded ideal in . The relation between the algebra and regarding to -quadratic and - quadratic will be investigated. We show that the algebra is - quadratic if and only if is - quadratic. Furthermore, it has been shown that the algebra is - quadratic if and only if is - quadratic.