In this paper, the concept of fully stable Banach Algebra modules relative to an ideal has been introduced. Let A be an algebra, X is called fully stable Banach A-module relative to ideal K of A, if for every submodule Y of X and for each multiplier ?:Y?X such that ?(Y)?Y+KX. Their properties and other characterizations for this concept have been studied.
Let R be a commutative ring with unity. In this paper we introduce and study fuzzy distributive modules and fuzzy arithmetical rings as generalizations of (ordinary) distributive modules and arithmetical ring. We give some basic properties about these concepts.
In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.
Let R be a commutative ring with identity and M be unitary (left) R-module. The principal aim of this paper is to study the relationships between relatively cancellation module and multiplication modules, pure submodules and Noetherian (Artinian) modules.
The (Richard Wagner) of cultural figures rare collected between philosophy and literature and the arts to reach the concept of the artwork destruction (Gesamtkunstwerk), who called for by the movement romantic, he is a thinker, and composer renewed, and playwright, designer and architect of a special kind.Able ( Wagner ) that translates his thoughts technical and design in the field of opera and disclose those ideas models actual dealt joints essential this art heritage, which was developed and laid his modern rules approach by achieving his dream creates theater ideal, which was held in the city ( Bayreuth) in ( Bavaria ), one of the German Federal States .The study reviews the ideas of Wagner and their sources, which have had an import
... Show MoreLet R be a ring with 1 and W is a left Module over R. A Submodule D of an R-Module W is small in W(D ≪ W) if whenever a Submodule V of W s.t W = D + V then V = W. A proper Submodule Y of an R-Module W is semismall in W(Y ≪_S W) if Y = 0 or Y/F ≪ W/F ∀ nonzero Submodules F of Y. A Submodule U of an R-Module E is essentially semismall(U ≪es E), if for every non zero semismall Submodule V of E, V∩U ≠ 0. An R-Module E is essentially semismall quasi-Dedekind(ESSQD) if Hom(E/W, E) = 0 ∀ W ≪es E. A ring R is ESSQD if R is an ESSQD R-Module. An R-Module E is a scalar R-Module if, ∀ , ∃ s.t V(e) = ze ∀ . In this paper, we study the relationship between ESSQD Modules with scalar and multiplication Modules. We show that
... Show MoreVehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destina
... Show MoreAn intuitionistic fuzzy set was exhibited by Atanassov in 1986 as a generalization of the fuzzy set. So, we introduce cubic intuitionistic structures on a KU-semigroup as a generalization of the fuzzy set of a KU-semigroup. A cubic intuitionistic k-ideal and some related properties are introduced. Also, a few characterizations of a cubic intuitionistic k-ideal are discussed and new cubic intuitionistic fuzzy sets in a KU-semigroup are defined.
Let R be an associative ring with identity and M a non – zero unitary R-module.In this paper we introduce the definition of purely co-Hopfian module, where an R-module M is said to be purely co-Hopfian if for any monomorphism f ˛ End (M), Imf is pure in M and we give some properties of this kind of modules.