There is a great deal of systems dealing with image processing that are being used and developed on a daily basis. Those systems need the deployment of some basic operations such as detecting the Regions of Interest and matching those regions, in addition to the description of their properties. Those operations play a significant role in decision making which is necessary for the next operations depending on the assigned task. In order to accomplish those tasks, various algorithms have been introduced throughout years. One of the most popular algorithms is the Scale Invariant Feature Transform (SIFT). The efficiency of this algorithm is its performance in the process of detection and property description, and that is due to the fact that it operates on a big number of key-points, the only drawback it has is that it is rather time consuming. In the suggested approach, the system deploys SIFT to perform its basic tasks of matching and description is focused on minimizing the number of key-points which is performed via applying Fast Approximate Nearest Neighbor algorithm, which will reduce the redundancy of matching leading to speeding up the process. The proposed application has been evaluated in terms of two criteria which are time and accuracy, and has accomplished a percentage of accuracy of up to 100%, in addition to speeding up the processes of matching and description.
In this paper, our aim is to solve analytically a nonlinear social epidemic model as an initial value problem (IVP) of ordinary differential equations. The mathematical social epidemic model under study is applied to alcohol consumption model in Spain. The economic cost of alcohol consumption in Spain is affected by the amount of alcohol consumed. This paper refers to the study of alcohol consumption using some analytical methods. Adomian decomposition and variation iteration methods for solving alcohol consumption model have used. Finally, a compression between the analytic solutions of the two used methods and the previous actual values from 1997 to 2007 years is obtained using the absolute and
... Show MoreDue to the importance of solutions of partial differential equations, linear, nonlinear, homogeneous, and non-homogeneous, in important life applications, including engineering applications, physics and astronomy, medical sciences, and life technology, and their importance in solutions to heat transfer equations, wave, Laplace equation, telegraph, etc. In this paper, a new double integral transform has been proposed.
In this work, we have introduced a new double transform ( Double Complex EE Transform ). In addition, we presented the convolution theorem and proved the properties of the proposed transform, which has an effective and useful role in dealing with the solution of two-dimensional partial differential equations. Moreover
... Show MoreThis paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show MoreConstruction of photographed bullying scale of kindergarteners was the aim of this study. The study conducted to answer the raised question, could the bullying among kindergarteners be measured?. A total of (200) boy and girl were selected from city of Baghdad to be the sample of the study. The scale composed of (27) item with colored pictures. It takes about (15) minuets to answer the whole scale items. SPSS tools were used to process the collected data. The result showed that the bullying among kindergarteners could be measured.
In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.
The goal beyond this Research is to review methods that used to estimate Logistic distribution parameters. An exact estimators method which is the Moment method, compared with other approximate estimators obtained essentially from White approach such as: OLS, Ridge, and Adjusted Ridge as a suggested one to be applied with this distribution. The Results of all those methods are based on Simulation experiment, with different models and variety of sample sizes. The comparison had been made with respect to two criteria: Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE).
In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
In this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.
Compressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension) on speech compression. DWT and MCT performances in terms of comp
... Show MoreAmong the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the
... Show More