There is a great deal of systems dealing with image processing that are being used and developed on a daily basis. Those systems need the deployment of some basic operations such as detecting the Regions of Interest and matching those regions, in addition to the description of their properties. Those operations play a significant role in decision making which is necessary for the next operations depending on the assigned task. In order to accomplish those tasks, various algorithms have been introduced throughout years. One of the most popular algorithms is the Scale Invariant Feature Transform (SIFT). The efficiency of this algorithm is its performance in the process of detection and property description, and that is due to the fact that it operates on a big number of key-points, the only drawback it has is that it is rather time consuming. In the suggested approach, the system deploys SIFT to perform its basic tasks of matching and description is focused on minimizing the number of key-points which is performed via applying Fast Approximate Nearest Neighbor algorithm, which will reduce the redundancy of matching leading to speeding up the process. The proposed application has been evaluated in terms of two criteria which are time and accuracy, and has accomplished a percentage of accuracy of up to 100%, in addition to speeding up the processes of matching and description.
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MorePhysically based modeling approach has been widely developed in recent years for the simulation of dam failure process due to the lack of field data. This paper provides and describes a physically-based model depending on dimensional analysis and hydraulic simulation methods for estimating the maximum water level and the wave propagation time from breaching of field test dams. The field physical model has been constructed in Dabbah city to represent the collapse of the Roseires dam in Sudan. Five cases of a dam failure were studied to simulate water flood conditions by changing initial water height in the reservoir (0.8, 1.0, 1.2, 1.4 and 1.5 m respectively).The physical model working under five cases, case 5 had the greatest influence of t
... Show MoreCalcium carbonate is predominantly present in aqueous systems, which is
commonly used in industrial processes. It has inverse solubility characteristics
resulting in the deposition of scale on heat transfer surface. This paper focuses on
developing methods for inhibition of calcium carbonate scale formation in cooling
tower and air cooler system where scaling can cause serious problems, ZnCl 2 and ZnI
2 has been investigated as scale inhibitor on AISI 316 and 304. ZnCl 2 were more
effective than ZnI 2 in both systems, and AISI 316 show more receptivity to the
chlorides salt compared to AISI 304. The inhibitors were more effective in cooling
tower than air cooler system. AISI 316 show more constant inhibition effic
n this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.
String matching is seen as one of the essential problems in computer science. A variety of computer applications provide the string matching service for their end users. The remarkable boost in the number of data that is created and kept by modern computational devices influences researchers to obtain even more powerful methods for coping with this problem. In this research, the Quick Search string matching algorithm are adopted to be implemented under the multi-core environment using OpenMP directive which can be employed to reduce the overall execution time of the program. English text, Proteins and DNA data types are utilized to examine the effect of parallelization and implementation of Quick Search string matching algorithm on multi-co
... Show MoreThe consensus algorithm is the core mechanism of blockchain and is used to ensure data consistency among blockchain nodes. The PBFT consensus algorithm is widely used in alliance chains because it is resistant to Byzantine errors. However, the present PBFT (Practical Byzantine Fault Tolerance) still has issues with master node selection that is random and complicated communication. The IBFT consensus technique, which is enhanced, is proposed in this study and is based on node trust value and BLS (Boneh-Lynn-Shacham) aggregate signature. In IBFT, multi-level indicators are used to calculate the trust value of each node, and some nodes are selected to take part in network consensus as a result of this calculation. The master node is chosen
... Show More
