In this paper, we introduce and study a new concept (up to our knowledge) named CL-duo modules, which is bigger than that of duo modules, and smaller than weak duo module which is given by Ozcan and Harmanci. Several properties are investigated. Also we consider some characterizations of CL-duo modules. Moreover, many relationships are given for this class of modules with other related classes of modules such as weak duo modules, P-duo modules.
Throughout this paper, we introduce the notion of weak essential F-submodules of F-modules as a generalization of weak essential submodules. Also we study the homomorphic image and inverse image of weak essential F-submodules.
An R-module M is called ET-H-supplemented module if for each submodule X of M, there exists a direct summand D of M, such that T⊆X+K if and only if T⊆D+K, for every essential submodule K of M and T M. Also, let T, X and Y be submodules of a module M , then we say that Y is ET-weak supplemented of X in M if T⊆X+Y and (X⋂Y M. Also, we say that M is ET-weak supplemented module if each submodule of M has an ET-weak supplement in M. We give many characterizations of the ET-H-supplemented module and the ET-weak supplement. Also, we give the relation between the ET-H-supplemented and ET-lifting modules, along with the relationship between the ET weak -supplemented and ET-lifting modules.
An -module is called absolutely self neat if whenever is a map from a maximal left ideal of , with kernel in the filter is generated by the set of annihilator left ideals of elements in into , then is extendable to a map from into . The concept is analogous to the absolute self purity, while it properly generalizes quasi injectivity and absolute neatness and retains some of their properties. Certain types of rings are characterized using this concept. For example, a ring is left max-hereditary if and only if the homomorphic image of any absolutely neat -module is absolutely self neat, and is semisimple if and only if all -modules are absolutely self neat.
We introduce in this paper, the notion of a 2-quasì-prime module as a generalization of quasi-prime module, we know that a module E over a ring R is called quasi-prime module, if (0) is quasi-prime submodule. Now, we say that a module E over ring R is a 2-quasi-prime module if (0) is 2-quasi-prime submodule, a proper submodule K of E is 2-quasi-prime submodule if whenever , and , then either or .
Many results about these kinds of modules are obtained and proved, also, we will give a characterization of these kinds of modules.
Abstract
In order to determine what type of photovoltaic solar module could best be used in a thermoelectric photovoltaic power generation. Changing in powers due to higher temperatures (25oC, 35oC, and 45oC) have been done for three types of solar modules: monocrystalline , polycrystalline, and copper indium gallium (di) selenide (CIGS). The Prova 200 solar panel analyzer is used for the professional testing of three solar modules at different ambient temperatures; 25oC, 35oC, and 45oC and solar radiation range 100-1000 W/m2. Copper indium gallium (di) selenide module has the lowest power drop (with the average percent
... Show MoreLet R be a commutative ring with identity, and let M be a unitary (left) R- modul e. The ideal annRM = {r E R;rm = 0 V mE M} plays a central
role in our work. In fact, we shall be concemed with the case where annR1i1 = annR(x) for some x EM such modules will be called bounded modules.[t htrns out that there are many classes of modules properly contained in the class of bounded modules such as cyclic modules, torsion -G·ee modulcs,faithful multiplicat
... Show MoreLet R be a commutative ring with unity. Let W be an R-module, for K≤F, where F is a submodule of W and K is said to be R-annihilator coessential submodule of F in W (briefly R-a-coessential) if (denoted by K F in W). An R-module W is called strongly hollow -R-annihilator -lifting module (briefly, strongly hollow-R-a-lifting), if for every submodule F of W with hollow, there exists a fully invariant direct summand K of W such that K F in W. An R - module W is called strongly R - annihilator - ( hollow - lifting ) module ( briefly strongly R - a - ( hollow - lifting ) module ), if for every submodule F of W with R - a - hollow, there exists a fully invariant direct summand K o
... Show MoreLet be a commutative ring with 1 and be left unitary . In this paper we introduced and studied concept of semi-small compressible module (a is said to be semi-small compressible module if can be embedded in every nonzero semi-small submodule of . Equivalently, is semi-small compressible module if there exists a monomorphism , , is said to be semi-small retractable module if , for every non-zero semi-small sub module in . Equivalently, is semi-small retractable if there exists a homomorphism whenever . In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible and retractable respectively and give some of their adv
... Show MoreLet be a commutative ring with 1 and be left unitary . In this papers we introduced and studied concept P-small compressible (An is said to be P-small compressible if can be embedded in every of it is nonzero P-small submodule of . Equivalently, is P-small compressible if there exists a monomorphism , , is said to be P-small retractable if , for every non-zero P-small submodule of . Equivalently, is P-small retractable if there exists a homomorphism whenever as a generalization of compressible and retractable respectively and give some of their advantages characterizations and examples.
Let R be an associative ring with identity and let M be a left R-module . As a generalization of µ-semiregular modules, we introduce an F-µ-semiregular module. Let F be a submodule of M and x∊M. x is called F-µ-semiregular element in M , if there exists a decomposition M=A⨁B, such that A is a projective submodule of and . M is called F-µ-semiregular if x is F-µ-semiregular element for each x∊M. A condition under which the module µ-semiregular is F-µ-semiregular module was given. The basic properties and some characterizations of the F-µ-semiregular module were provided.