Plane cubics curves may be classified up to isomorphism or projective equivalence. In this paper, the inequivalent elliptic cubic curves which are non-singular plane cubic curves have been classified projectively over the finite field of order nineteen, and determined if they are complete or incomplete as arcs of degree three. Also, the maximum size of a complete elliptic curve that can be constructed from each incomplete elliptic curve are given.
This paper presents a numerical simulation of the flow around elliptic groynes by using CFD software. The flow was simulated in a flume with 4m long, 0.4m wide, and 0.175m high with a constant bed slope. Moreover, the first Groyne placed at 1m from the flow inlet with a constant the Groyne height of 10cm and a 1cm thickness, and the width of Groynes equals 7cm. A submergence ratio of the elliptic Groynes of 75% was assumed, corresponding to a discharge of 0.0057m3/sec. The CFD model showed a good ability to simulate the flow around Groynes with good accuracy. The results of CFD software showed that when using double elliptic Groy
... Show MoreIn this paper, the proposes secure system to improving security of ID card and passports is by generating cubic spline co-occurrence code (CCO code) for each ID card. The authentication part, begins passing ID card through the checkpoint then the checkpoint will check the information of card or passport by also extracting features in order to generate the cubic spline co-occurrence code (CCO code), finally comparison is made between extracted CCO code at the checkpoint and CCO code that has been printed on ID card or passport (type of fraud like change personal picture or fraud it’s information). Several tests were conducted to evaluate the performance of the proposed security system. Furthermore, the experiment results reveal that the
... Show MoreThis contribution investigates the effect of the addition of the Hubbard U parameter on the electronic structural and mechanical properties of cubic (C-type) lanthanide sesquioxides (Ln2O3). Calculated Bader's charges confirm the ionic character of Lnsingle bondO bonds in the C-type Ln2O3. Estimated structural parameters (i.e., lattice constants) coincide with analogous experimental values. The calculated band gaps energies at the Ueff of 5 eV for these compounds exhibit a non-metallic character and Ueff of 6.5 eV reproduces the analogous experimental band gap of cerium sesquioxide Ce2O3. We have thoroughly investigated the effect of the O/Ce ratios and the effect of hafnium (Hf) and zirconium (Zr) dopants on the reduction energies of C
... Show MoreIn this work, we study of the concept of a cubic set of a semigroup in KU-algebra. Firstly, we study a cubic sub KU-semigroup and achieve some results in this notion. And then, we get a relation between a cubic sub KU-semi group and a level set of a cubic set. Moreover, we define some cubic ideals of this structure and we found relationships between these ideals.
2010 AMS Classification. 08A72, 03G25, 06F35
The aim of this paper is to construct the (k,r)-caps in the projective 3-space PG(3,p) over Galois field GF(4). We found that the maximum complete (k,2)-cap which is called an ovaloid , exists in PG(3,4) when k = 13. Moreover the maximum (k,3)-caps, (k,4)-caps and (k,5)-caps.
Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of
... Show MoreThe Elliptic Curve Cryptography (ECC) algorithm meets the requirements for multimedia encryption since the encipher operation of the ECC algorithm is applied at points only and that offer significant computational advantages. The encoding/decoding operations for converting the text message into points on the curve and vice versa are not always considered a simple process. In this paper, a new mapping method has been investigated for converting the text message into a point on the curve or point to a text message in an efficient and secure manner; it depends on the repeated values in coordinate to establish a lookup table for encoding/ decoding operations. The proposed method for mapping process is&
... Show MoreOur aim in this work is to study the classical continuous boundary control vector problem for triple nonlinear partial differential equations of elliptic type involving a Neumann boundary control. At first, we prove that the triple nonlinear partial differential equations of elliptic type with a given classical continuous boundary control vector have a unique "state" solution vector, by using the Minty-Browder Theorem. In addition, we prove the existence of a classical continuous boundary optimal control vector ruled by the triple nonlinear partial differential equations of elliptic type with equality and inequality constraints. We study the existence of the unique solution for the triple adjoint equations
... Show MoreIn this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of
... Show MoreIn this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV) by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.