Plane cubics curves may be classified up to isomorphism or projective equivalence. In this paper, the inequivalent elliptic cubic curves which are non-singular plane cubic curves have been classified projectively over the finite field of order nineteen, and determined if they are complete or incomplete as arcs of degree three. Also, the maximum size of a complete elliptic curve that can be constructed from each incomplete elliptic curve are given.
For the generality of fuzzy ideals in TM-algebra, a cubic ideal in this algebra has been studied, such as cubic ideals and cubic T-ideals. Some properties of these ideals are investigated. Also, we show that the cubic T-ideal is a cubic ideal, but the converse is not generally valid. In addition, a cubic sub-algebra is defined, and new relations between the level subset and a cubic sub-algebra are discussed. After that, cubic ideals and cubic T-ideals under homomorphism are studied, and the image (pre-image) of cubic T-ideals is discussed. Finally, the Cartesian product of cubic ideals in Cartesian product TM-algebras is given. We proved that the product of two cubic ideals of the Cartesian product of two TM-algebras is also a cubic ideal.
The idea of a homomorphism of a cubic set of a KU-semigroup is studied and the concept of the product between two cubic sets is defined. And then, a new cubic bipolar fuzzy set in this structure is discussed, and some important results are achieved. Also, the product of cubic subsets is discussed and some theorems are proved.
The aim of t his p aper is t o const ruct t he (k,r)-caps in t he p rojective 3-sp ace PG(3,p ) over Galois field GF(4). We found t hat t he maximum comp let e (k,2)-cap which is called an ovaloid, exist s in PG(3,4) when k = 13. Moreover t he maximum (k,3)-cap s, (k,4)-cap s and (k,5)-caps.
It is known that, the concept of hyper KU-algebras is a generalization of KU-algebras. In this paper, we define cubic (strong, weak,s-weak) hyper KU-ideals of hyper KU-algebras and related properties are investigated.
Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of
... Show MoreIn this work, we study of the concept of a cubic set of a semigroup in KU-algebra. Firstly, we study a cubic sub KU-semigroup and achieve some results in this notion. And then, we get a relation between a cubic sub KU-semi group and a level set of a cubic set. Moreover, we define some cubic ideals of this structure and we found relationships between these ideals.
2010 AMS Classification. 08A72, 03G25, 06F35
This contribution investigates the effect of the addition of the Hubbard U parameter on the electronic structural and mechanical properties of cubic (C-type) lanthanide sesquioxides (Ln2O3). Calculated Bader's charges confirm the ionic character of Lnsingle bondO bonds in the C-type Ln2O3. Estimated structural parameters (i.e., lattice constants) coincide with analogous experimental values. The calculated band gaps energies at the Ueff of 5 eV for these compounds exhibit a non-metallic character and Ueff of 6.5 eV reproduces the analogous experimental band gap of cerium sesquioxide Ce2O3. We have thoroughly investigated the effect of the O/Ce ratios and the effect of hafnium (Hf) and zirconium (Zr) dopants on the reduction energies of C
... Show MoreThis study investigated the cubic intuitionistic fuzzy set of TM-algebra as a generalization of the cubic set. First, a cubic intuitionistic ideal and a cubic intuitionistic T-ideal are defined, followed by a discussion of their properties. Furthermore, the level set of a cubic intuitionistic TM-algebra is defined, and the relationship between a cubic intuitionistic level set and the cubic intuitionistic T-ideal is established. A novel definition of a cubic intuitionistic set under homomorphism is proposed, and several significant results are demonstrated.
This paper refers to studying some types of ideals, specifically cubic bipolar ideals and cubic bipolar T-ideals of TM algebra. It also introduces a cubic bipolar sub-TM-algebra and several important properties of these concepts. The relationships between these ideals and characterizations of cubic bipolar T-ideals are investigated.