Oscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.
A New Spectrophotometric Methods are improved for determination Metronidazole (MTZ) and Metronidazolebenzoate (MTZB) depending on1STand 2nd derivative spectrum of the two drugs by using ethanol as a solvent. Many techniques were proportionated with concentration (peak high to base line, peak to peak and peak area). The linearity of the methodsranged between(1-25µg.ml-1) is obtained. The results were precise and accurate throw RSD% were between (0.041-0.751%) and (0.0331-0.452%), Rec% values between (97.78, 101.87%) and (98.033-102.39%) while the LOD between (0.051-0.231 µg.ml-1) and (0.074-1.04 µg.ml-1) and LOQ between (0.170-0.770µg.ml-1) and (0.074-0.313 µg.ml-1) of (MTZ) and of (MTZB) respectively. These Methods were successfully ap
... Show MoreThe prediction process of time series for some time-related phenomena, in particular, the autoregressive integrated moving average(ARIMA) models is one of the important topics in the theory of time series analysis in the applied statistics. Perhaps its importance lies in the basic stages in analyzing of the structure or modeling and the conditions that must be provided in the stochastic process. This paper deals with two methods of predicting the first was a special case of autoregressive integrated moving average which is ARIMA (0,1,1) if the value of the parameter equal to zero, then it is called Random Walk model, the second was the exponential weighted moving average (EWMA). It was implemented in the data of the monthly traff
... Show MoreFor many problems in Physics and Computational Fluid Dynamics (CFD), providing an accurate approximation of derivatives is a challenging task. This paper presents a class of high order numerical schemes for approximating the first derivative. These approximations are derived based on solving a special system of equations with some unknown coefficients. The construction method provides numerous types of schemes with different orders of accuracy. The accuracy of each scheme is analyzed by using Fourier analysis, which illustrates the dispersion and dissipation of the scheme. The polynomial technique is used to verify the order of accuracy of the proposed schemes by obtaining the error terms. Dispersion and dissipation errors are calculated
... Show MoreThe main purpose of this paper, is to characterize new admissible classes of linear operator in terms of seven-parameter Mittag-Leffler function, and discuss sufficient conditions in order to achieve certain third-order differential subordination and superordination results. In addition, some linked sandwich theorems involving these classes had been obtained.
This paper presents the implementation of a complex fractional order proportional integral derivative (CPID) and a real fractional order PID (RPID) controllers. The analysis and design of both controllers were carried out in a previous work done by the author, where the design specifications were classified into easy (case 1) and hard (case 2) design specifications. The main contribution of this paper is combining CRONE approximation and linear phase CRONE approximation to implement the CPID controller. The designed controllers-RPID and CPID-are implemented to control flowing water with low pressure circuit, which is a first order plus dead time system. Simulation results demonstrate that while the implemented RPID controller fails to stabi
... Show MoreNonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though
... Show MoreMany of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem
... Show MoreThe fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).