Oscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.
In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper we prove the boundedness of the solutions and their derivatives of the second order ordinary differential equation x ?+f(x) x ?+g(x)=u(t), under certain conditions on f,g and u. Our results are generalization of those given in [1].
In this study, a brand-new double transform known as the double INEM transform is introduced. Combined with the definition and essential features of the proposed double transform, new findings on partial derivatives, Heaviside function, are also presented. Additionally, we solve several symmetric applications to show how effective the provided transform is at resolving partial differential equation.
In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using Mathcad 15.and graphic in Matlab R2015a.
In this work, a novel technique to obtain an accurate solutions to nonlinear form by multi-step combination with Laplace-variational approach (MSLVIM) is introduced. Compared with the traditional approach for variational it overcome all difficulties and enable to provide us more an accurate solutions with extended of the convergence region as well as covering to larger intervals which providing us a continuous representation of approximate analytic solution and it give more better information of the solution over the whole time interval. This technique is more easier for obtaining the general Lagrange multiplier with reduces the time and calculations. It converges rapidly to exact formula with simply computable terms wit
... Show MoreLaboratory model tests were performed to investigate the behavior of shallow and inclined skirted foundations placed on sandy soil with R.D%=30 and the extent of the impact of the positive and negative eccentric-inclined loading effect on them. To achieve the experimental tests, it was used a box of (600×600) mm cross-sectional and 600mm in height and a square footing of (50*50) mm and 10 mm in thickness attached to the skirt with Ds=0.5B and various an angle of (10°, 20°, 30°). The results showed that using skirts leads to a significant improvement in load-carrying capacity and decreased settlement. In addition, when the skirt angle increased, the ultimate load improved. Load-carrying capacity decreased with increasing eccentri
... Show MoreThe aim of the present study is to highlight the role of total cholesterol (TC), triacylglycerol (TG), Glycated hemoglobin A1c and iron in Iraqi women with multiple sclerosis and also to examine the biochemical action of copaxone (which is the most widely used in the 21st century to treat multiple sclerosis) on these biochemical parameters. This is the first study in Iraq which deals copaxone action on TC , TG , HbA1c and iron. Ninety women in their fourth decade suffering from multiple sclerosis were enrolled in this study. They were divided into: the first (group B) composed of (30) women without any treatment related to multiple sclerosis or any treatment linked with chronic or inflammatory diseases. The second (group A1) included (30)
... Show More