The paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
This paper applies the Modified Adomian Decomposition Method (MADM) for solving Integro-Differential Inequality, this method is one of effective to construct analytic approximate solutions for linear and nonlinear integro-differential inequalities without solving many integrals and transformed or discretization. Several examples are presented, the analytic results show that this method is a promising and powerful for solving these problems.
The nonhomogeneous higher order linear complex differential equation (HOLCDE) with meromorphic (or entire) functions is considered in this paper. The results are obtained by putting some conditions on the coefficients to prove that the hyper order of any nonzero solution of this equation equals the order of one of its coefficients in case the coefficients are meromorphic functions. In this case, the conditions were put are that the lower order of one of the coefficients dominates the maximum of the convergence exponent of the zeros sequence of it, the lower order of both of the other coefficients and the nonhomogeneous part and that the solution has infinite order. Whiles in case the coefficients are entire functions, any nonzero solutio
... Show Morein this paper fourth order kutta method has been used to find the numerical solution for different types of first liner
In the present paper, by making use of the new generalized operator, some results of third order differential subordination and differential superordination consequence for analytic functions are obtained. Also, some sandwich-type theorems are presented.
An efficient combination of Adomian Decomposition iterative technique coupled with Laplace transformation to solve non-linear Random Integro differential equation (NRIDE) is introduced in a novel way to get an accurate analytical solution. This technique is an elegant combination of theLaplace transform, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has also been established that (LT
... Show MoreThe author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.
The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.
In this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.
In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.