Apparent molar volume, V?, and viscosity B-coefficient of nicotinc acid in water and in aqueous NaCl solutions have been determined from density and viscosity measurements at (293.15, 298.15, 303.15 and 308.15) K. The experimental density data were evaluated by Masson equation, and the derived, apparent molar volume at infinite dilution, Vo?, and the slope Sv, were interpreted in term of solute-solvent and solute- solute interactions. Transfer apparent molar volumes at infinite dilution of nicotinic acid from water to NaCl solutions at various temperatures have been calculated.The viscosity data have been analyzed using Jones-Dole equation, and the derived parameters, Jones-Dolecoefficient, B,and Falkenhagen coefficient,A, have been also interpreted in terms of solute-solvent and solute-solute interactions respectively. The variation of B coefficient with temperature, (dB/dT), was also determined, the negative values indicate that nicotinic acid in aqueous NaCl solution is structure making. The results were interpreted in terms of complex vitamin-water-co-solute (NaCl) interactions. The free energy, enthalpy, andentropy of activation were calculated using the Nightingale, Benck, and Eyring equations. Free energies of activation of viscous flow ( *1) per mole, and, ( *2) per mole,of solvent and solute, respectively, were also calculated. The effects of soluteson the structure of water were interpreted in terms of viscositiesand the thermodynamic parameters.
A new method for determination of allopurinol in microgram level depending on its ability to reduce the yellow absorption spectrum of (I-3) at maximum wavelength ( ?max 350nm) . The optimum conditions such as "concentration of reactant materials , time of sitting and order of addition were studied to get a high sensitivity ( ? = 27229 l.mole-1.cm-1) sandal sensitivity : 0.0053 µg cm-2 ,with wide range of calibration curve ( 1 – 9 µg.ml-1 ) good stability (more then24 hr.) and repeatability ( RSD % : 2.1 -2.6 % ) , the Recovery % : ( 98.17 – 100.5 % ) , the Erel % ( 0.50 -1.83 % ) and the interference's of Xanthine , Cystein , Creatinine , Urea and the Glucose in 20 , 40 , 60 fold of analyate were also studied .
In the analysis of multiple linear regression, the problem of multicollinearity and auto-correlation drew the attention of many researchers, and given the appearance of these two problems together and their bad effect on the estimation, some of the researchers found new methods to address these two problems together at the same time. In this research a comparison for the performance of the Principal Components Two Parameter estimator (PCTP) and The (r-k) class estimator and the r-(k,d) class estimator by conducting a simulation study and through the results and under the mean square error (MSE) criterion to find the best way to address the two problems together. The results showed that the r-(k,d) class estimator is the best esti
... Show MoreThis assay rapidly detects chlorpromazine hydrochloride using its ability to reduce gold ions to form nanoparticles. Its low cost, resilience to interferences and short analysis time could facilitate environmental monitoring and biomedical analysis.
This assay rapidly detects chlorpromazine hydrochloride using its ability to reduce gold ions to form nanoparticles. Its low cost, resilience to interferences and short analysis time could facilitate environmental monitoring and biomedical analysis.
Credit card fraud has become an increasing problem due to the growing reliance on electronic payment systems and technological advances that have improved fraud techniques. Numerous financial institutions are looking for the best ways to leverage technological advancements to provide better services to their end users, and researchers used various protection methods to provide security and privacy for credit cards. Therefore, it is necessary to identify the challenges and the proposed solutions to address them. This review provides an overview of the most recent research on the detection of fraudulent credit card transactions to protect those transactions from tampering or improper use, which includes imbalance classes, c
... Show MoreWireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show Morein this paper sufficient conditions of oscillation of all of nonlinear second order neutral differential eqiation and sifficient conditions for nonoscillatory soloitions to onverage to zero are obtained
The main objective of this study is to experimentally investigate the effect of the CMC polymeric drag reducer on the pressure drop occurred along the annulus of the wellbore in drilling operation and investigate the optimum polymer concentration that give the minimum pressure drop. A flow loop was designed for this purpose consist from 14 m long with transparent test section and differential pressure transmitter that allows to sense and measure the pressure losses along the test section. The results from the experimental work show that increasing in polymer concentration help to reduce the pressure drop in annulus and the optimum polymer concentration with the maximum drag reducing is 0.8 kg/m3. Also increasing in flow rate a
... Show MoreTwo unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.